

Roy F. Weston, Inc.
Federal Programs Division
Suite 201
1090 King Georges Post Road
Edison, New Jersey 08837-3703
732-225-6116 • Fax 732-225-7037

REMOVAL SUPPORT TEAM EPA CONTRACT 68-W-00-113

RST-02-F-00456

TRANSMITTAL MEMO

To:

Neil Norrell, OSC

Responce and Prevention Branch, U.S. EPA Region II

From:

Smita Sumbaly, Inorganic Data Reviewer

RST Region II

Subject:

Standard Chlorine Site

Data Validation Assessment

Date:

January 08, 2002

The purpose of this memo is to transmit the following information:

Data validation results for the following parameters:

TCLP Metals

08 samples

Hexavalent Chromium

18 samples

TAL Metals

18 samples

Matrices and Number of Samples

Soil

13 samples

Liquid/Water

05 samples

Sampling date:

July 18 through 23, 2001

The final data assessment narrative and original analytical data package are attached.

cc:

RST PM:

Robert Finke

RST SITE FILE TDD #:

02-01-05-0018

ANALYTICAL TDD #:

02-01-07-0012

PCS#

1397

U.S. ENVIRONMENTAL PROTECTION AGENCY

MEMORANDUM DATE: <u>January 08, 2002</u>

TO: Neil Norrell, OSC
USEPA Region II

FROM: <u>Smita Sumbaly</u>
RST Data Review Team

SUBJECT: QA/QC Compliance Review Summary

As requested quality control and performance measures for the data packages noted have been examined and compared to EPA standards for compliance. Measures for the following general areas were evaluated as applicable:

Data Completeness

Spectra Matching Quality

Surrogate Spikes

Matrix Spikes/Duplicates

Calibration

Blanks

DFTPP and BFB Tuning

Chromatography

Holding Times

Compound ID (HSL, TIC)

Any statistical measures used to support the following conclusions are attached so that the review may be reviewed by others.

Summary of Results

	· I	· ÌI	III	IV
	<u>TAL</u>	<u>TCLP</u>	<u>CR VI</u>	·
:	<u>Metals</u>	<u>Metals</u>	•	
Acceptable as Submitted	· · · · · · · · · · · · · · · · · · ·	·		· <u></u>
Acceptable with Comments	<u>_X</u>	_X	<u>_X</u> _	·
Unacceptable, Action Pendin	g			
Unacceptable		<u> </u>		
Data Reviewed by:	Surla Su	mbey	Date: <u>01</u>	108/02
Approved By:	Kolure -	Juni	Date: 1 (2	29/02
Area Code/Phone No.:	(732) 225-6116			

NARRATIVE

CASE No. <u>1397</u>

SITE NAME:	IE: Standard Chlorine Site					
	1015 Belleville Turnpike, I	Kearny, New Jersey.				
Laboratory Name:	Severn Trent Laboratories (STL), 10 Hazelwood Drive, Amherst, New York.				
NTRODUCTION:						
The laboratory's portion through 23, 2001.	n of this Case consisted of 13 so	il and 05 liquid/water samples collected on July 18				
The laboratory report	ed the No problem(s) with the	e receipt of these samples.				
The laboratory reported No problems with the analyses of TAL metals, TCLP metals, Hexavalent Chromium(CR VI)- Inorganic parameters. The evaluator has commented on the criteria specified under each fraction heading. All criteria have been assessed, but no discussion is given where the evaluator has determined that criteria were adequately performed or require no comment. Details relevant to these comments are given on the following forms. Appropriate Form I's and Chain of Custody have been copied from the original data package and appended to the data assessment narrative for reference.						
V. <u>Inorganic:</u>						
Y Blanks Y Spike Sa Y Detection Y ICP Seria Y ICP Interection Y Chain of	mple Recovery n Limits l Dilutions element Correction Factors	Y Initial and Continuing Calibration Y ICP Interference Check Y Duplicates NA Standard Addition Results Y Holding Times Y ICP Linear Ranges Y Raw Data etc.				
Comments:	Comments:					

Refer to Data Assessment Narrative. 1.

Page 1 of 8

Title: Evaluation of Inorganic Data for the

Contract laboratory Program

Appendix A.2: Data Assessment Narrative

Date: Jan. 1992

Number: HW-2

Revision: 11

Case #: RFP # 1397

11

Site: Standard Chlorine Site

Matrix:

SDG#: A01-6942 & A01-7010

Lab: Severn Trent Laboratories

Soil: 13

Liquid/Water: 05

Contractor:

WESTON-RST

Reviewer: SMITA SUMBALY

A.2.1 Validation Flags-

The following flags have been applied in red by the data validator and must

be considered by the data user.

J-

This flag indicates the result qualified as estimated.

Red-Line-

A red-line drawn through a sample result indicates an unusable value. The

red-lined data are known to contain significant errors based on documented

information and must not be used by the data user.

Fully Usable Data-

The results that do not carry "J" or "red-line" are fully usable.

Contractual Qualifiers-The legend of contractual qualifiers applied by the laboratory on Form I's is found on page B-20 of SOW ILM01.0.

A.2.2 The data assessment is given below and on the attached sheets.

From July 18 through 23, 2001, USEPA Region II - personnel collected thirteen (13) solid and five (05) liquid/waste samples for Target Analyte List (TAL), Toxicity Characteristic Leachate Procedure (TCLP) and Hexavalent Chromium inorganic analyses, from the Standard Chlorine Site, Kearny, New Jersey. Within twenty-four hours of collection, samples were shipped via overnight Federal Express courier to Severn Trent Laboratories (STL), 10 Hazelwood Drive, Amherst, New York. The laboratory verified that samples were received intact and properly custody sealed.

Target Analyte List (TAL) inorganic analyses were performed following the SW846 Method Nos. 3010A(Water) 3050(Soil)/6010A for ICP metals and 7470 for mercury. Toxic Compound Leaching Procedure inorganic compound analyses were performed following the SW846 Method Nos. 3010A/3050A/6010A (TCLP metals except for mercury) and 7470 (mercury). Hexavalent Chromium was analyzed according to SW846 Method Nos. 7196.

Page 2 of 8

Title: Evaluation of Inorganic Data for the

Contract laboratory Program

Appendix A.2: Data Assessment Narrative

Date: Jan. 1992 Number: HW-2

Revision: 11

A.2.2 (continuation)

1.

Client identification (ID) and laboratory ID numbers are as follows:

Client ID No.	Laboratory ID No.	Matrix	Analysis
SC-CC10	AD114111	Soil	TAL/TCLP metals & Cr ⁺⁶
SC-CC11	AD114112	Soil	TAL/TCLP metals & Cr ⁺⁶
SC-CC12	AD114113	Soil	TAL/TCLP metals & Cr ⁺⁶
SC-CC13	AD114114	Soil	TAL/TCLP metals & Cr ⁺⁶
SC-COMP1	AD114115	Soil	TAL/TCLP metals & Cr ⁺⁶
SC-DC-COMP1	AD114117	Soil	TAL/TCLP metals & Cr ⁺⁶
SC-LS-001	AD114116	Soil	TAL/TCLP metals & Cr ⁺⁶
SC-CC9	AD114108	Soil	TAL/TCLP metals & Cr ⁺⁶
SC-230	AD114259	Soil	TAL metals & Cr ⁺⁶
SC-241515	AD114257	Soil	TAL metals & Cr ⁺⁶
SC-493	AD114258	Soil	TAL metals & Cr ⁺⁶
SC-CC11-COMP	AD114256	Soil	TAL metals & Cr ⁺⁶
SC-DFCOMP1	AD114260	Soil	TAL metals & Cr ⁺⁶
SC-229	AD114153	Water	TAL metals & Cr ⁺⁶
SC-243	AD114737	Water	TAL metals & Cr ⁺⁶
SC-PHD-001 ¹	AD114155	Water	TAL metals & Cr ⁺⁶
SC-PURH1	AD114154	Water	TAL metals & Cr ⁺⁶
SC-PURM1	AD114156	Water	TAL metals & Cr ⁺⁶

Soil sample **SC-PHD-001** is a field duplicate sample of sample **SC-PURH1**.

The results presented in the data package are acceptable with the exception noted in the following data assessment narrative.

Page 3 of 8

Title:

Evaluation of Inorganic Data for the

Contract laboratory Program

Appendix A.2: Data Assessment Narrative

Date: Jan. 1992 Number: HW-2

Revision: 11

A.2.2 (continuation)

MATRIX SPIKE RECOVERY:-

The following TAL inorganic analytes were either qualified as estimated "J" or rejected "red-lined"in the associated samples due to spike recoveries (% R) outside of specified QC limits in the associated spike samples and because the sample result (SR) concentration < 4 X the spike added (SA) concentration:

SDG #: A01-7010

ANALYTE	PERCENT RECOVERY	QC LIMIT	QUALIFIER	ASSOCIATED SAMPLES
Antimony	54.2%	75 - 125%	"J"	SC-230, SC-241515, SC-493, SC- CC11-COMP & SC-DFCOMP1
Barium	53.3%	75 - 125%	"J"	SC-230, SC-241515, SC-493, SC- CC11-COMP & SC-DFCOMP1
Cobalt	70.1%	75 - 125%	"J"	SC-230, SC-241515, SC-493, SC- CC11-COMP & SC-DFCOMP1
Copper	65.1%	75 - 125%	n j n	SC-230, SC-241515, SC-493, SC- CC11-COMP & SC-DFCOMP1
Lead	57.1%	75 - 125%	"J"	SC-230, SC-241515, SC-493, SC- CC11-COMP & SC-DFCOMP1
Manganese	-58.8%	75 - 125%	"R"	SC-230, SC-241515, SC-493, SC- CC11-COMP & SC-DFCOMP1
Nickel	-31.6%	75 - 125%	"R"	SC-230, SC-241515, SC-493, SC- CC11-COMP & SC-DFCOMP1
Mercury	173.2%	75 - 125%	"J"	SC-CC11-COMP & SC-DFCOMP1
Vanadium	-46.5%	75 - 125%	"R"	SC-230, SC-241515, SC-493, SC- CC11-COMP & SC-DFCOMP1
Zinc	9.5%	75 - 125%	"R"	SC-230, SC-241515, SC-493, SC-
SDG #: A01-	6942	•		CC11-COMP & SC-DFCOMP1
Antimony	18.3%	75 - 125%	ոյո	SC-CC10, SC-CC11, SC-CC12, SC-CC13, SC-COMP1, SC-DC-COMP1, SC-LS-001 & SC-CC9
•				;

Page 4 of 8

Title: Evaluation of Inorganic Data for the

Contract laboratory Program

Appendix A.2: Data Assessment Narrative

Date: Jan. 1992 Number: HW-2

Revision: 11

A.2.2 (continuation)

ANALYTE	PERCENT RECOVERY	QC LIMIT	QUALIFIE	R ASSOCIATED SAMPLES
Lead	70.6%	75 - 125%	"J"	SC-CC10, SC-CC11, SC-CC12, SC-CC13, SC-COMP1, SC-DC-COMP1, SC-LS-001 & SC-CC9
Selenium	245.8%	75 - 125%	"R"	SC-CC10

ICP SERIAL DILUTION:-

The following positive TAL inorganic data > 10 X IDL (or > MDL when the MDL is > 10 X IDL) were either qualified as estimated "J" or rejected "red-line" because the percent difference (% D) between the Initial Sample result (I) and the Serial Dilution Sample result (S) is either between 10-100% or > 100% when the concentration of I is > 10 X IDL:

SDG #: A01-7010

ANALYTE	CONTROL LIMIT	PERCENT DIFFERENCE	QUALIFIER	R ASSOCIATED SAMPLES
Aluminum	>2000 ug/l	33.6%	"J"	SC-PURM1, SC-PHD-001, SC-PURH1 & SC-243
Arsenic	> 70 ug/l	12.6%	"J"	SC-243
Barium	> 100 ug/l	33.8%	"J"	SC-PURM1, SC-PHD-001, SC-PURH1, SC-229 & SC-243
Calcium	> 5000 ug/l	41.7%	ոյո	SC-PURM1, SC-PHD-001, SC-PURH1 & SC-243
Chromium	> 20 ug/l	38.9%	"J"	SC-PURM1, SC-PHD-001, SC-PURH1, SC-229 & SC-243
Cobalt	> 50 ug/l	38.3%	"J"	SC-PURM1 & SC-243
Copper	>100 ug/l	34.0%	"J"	SC-PURM1, SC-PHD-001, SC-PURH1 & SC-229
Iron	> 500 ug/l	22.0%	"J"	SC-PURM1, SC-PHD-001, SC-PURH1, SC-229 & SC-243

Page 5 of 8

Title: Evalua

Evaluation of Inorganic Data for the

Contract laboratory Program

Appendix A.2: Data Assessment Narrative

Date: Jan. 1992 Number: HW-2 Revision: 11

A.2.2 (continuation)

ANALYTE	CONTROL LIMIT	PERCENT DIFFERENCE	QUALIFIER	ASSOCIATED SAMPLES
Lead	> 100 ug/l	35.1%	"J"	SC-PURM1, SC-PHD-001, SC- PURH1, SC-229 & SC-243
Magnesium	> 2000 ug/l	38.1%	ոյո	SC-PURM1, SC-PHD-001 & SC-243
Manganese	> 30 ug/l	39.8%	"J"	SC-PURM1, SC-PHD-001, SC-PURH1, SC-243 & SC-229
Nickel	> 100 ug/l	19.8%	ոյո	SC-243 & SC-PURM1
Potassium	> 5000 ug/l	19.7%	"J"	SC-PURM1, SC-PHD-001 & SC-PURH1
Sodium	> 10,000 ug/l	19.6%	"J"	SC-PURM1, SC-PHD-001 & SC-PURH1
Vanadium	>50 ug/l	35.8%	"J"	SC-PURM1, SC-PURH1 & SC-243
Zinc	>200 ug/l	23.4%	"J"	SC-PURM1, SC-PHD-001, SC-PURH1, SC-229, SC-243 & SC-DFCOMP1
SDG #: A01-	<u>-6942</u>			
Cadmium	>50 ug/l	73.8%	"J"	SC-CC10 & SC-CC9
Manganese	> 100 ug/l	12.1%	"J"	SC-CC10, SC-CC11, SC-CC12, SC-CC13, SC-COMP1, SC-DC-COMP1, SC-LS-001 & SC-CC9
Zinc	> 100 ug/l	14.2%	"J"	SC-CC10, SC-CC11, SC-CC12, SC-CC13, SC-COMP1, SC-DC-COMP1, SC-LS-001 & SC-CC9
Thallium	> 600 ug/l	53.8%	"J"	SC-CC10, SC-CC11, SC-CC12, SC-COMP1, SC-LS-001 & SC-CC9

Sample was previously qualified due to other QC criteria.

Page 6 of 8

Title:

Evaluation of Inorganic Data for the

Contract laboratory Program

Appendix A.2: Data Assessment Narrative

Date: Jan. 1992

Number: HW-2 Revision: 11

A.2.2 (continuation)

CRDL STANDARD RECOVERY:-

The following analytes were qualified estimated "J" due to Contract Required Detection Limit (CRDL) Standard Percent recoveries (% R) outside quality control limits and because their concentration fell within "affected ranges":

SDG #: A01-7010

<u>ANALYTE</u>	% RECOVERY	AFFECTED RANGE	<u>QUALIFIER</u>	ASSOCIATED SAMPLES
Selenium	61.8%	0.0 - 20.0 ug/l	"J"	SC-230, SC-241515, SC-493, SC-CC11-COMP & SC- DFCOMP1
Mercury SDG #: A01-		0.0-0.4 ug/l	"J"	SC-230, SC-241515, SC-493, SC-PHD-001, SC-PURH1, SC-229 & SC-243
TCLP Metal	<u>s</u>		•	
Mercury	65.0%	0.0-0.4 ug/l	"J"	SC-CC9, SC-CC10, SC- CC12, SC-CC13, SC-DC- COMP1 & SC-LS-001
TAL Metals				
Mercury	70.0%	0.0-0.4 ug/l	"J"	SC-CC9 & SC-COMP1

PERCENT SOLID OF SEDIMENTS:-

The following analytes were qualified as estimated "J" or rejected "red-lined" in the associated samples due to soil content in the sediments is less than 50%.

SDG #: A01-7010

<u>ANALYTE</u>	% SOLIDS	<u>LIMIT</u>	<u>QUALI</u>	FIER ASSOCIATED SAMPLES	
Al, As, Be, Cd, Ca, Cr, Fe, Mg, K, Hg, Ag, Na & Tl	between 10-50%	> 50%	"J"	SC-DFCOMP1	
Ag, Na & Tl		•			

Page 7 of 8

Title:

Evaluation of Inorganic Data for the

Contract laboratory Program

Appendix A.2: Data Assessment Narrative

Date: Jan. 1992 Number: HW-2

Revision: 11

A.2.2 (continuation)

FIELD DUPLICATE ANALYSIS:-

The following analytes were either qualified as estimated ("J") or rejected ("redlined") in the associated field duplicate samples because the Relative Percent Difference (RPD) or Difference (Diff) between the samples and corresponding field duplicate samples were outside the specified QC criteria:

ANALYTE	RPD/DIFFERENCE	QUALIFIER	ASSOCIATED SAMPLES
Aluminum, Magnesium & Zinc	RPD > 50%	"J"	SC-PURH1 ¹ & SC-PHD-001 ¹
Antimony, Cobalt & Nickel	diff > EQL	ոյո	SC-PURH1 & SC-PHD-001
Vanadium	>50%	"J"	SC-PURH1 ¹ & SC-PHD-001

Sample was previously qualified due to other QC criteria.

HEXAVALENT CHROMIUM

HOLDING TIME:

Mercury: The following data were qualified as estimated "J" or rejected "R" due to exceeding holding time criteria:

SDG #: A01-7010

MATRIX	PRESERVATION	DATE COLLECTED	VTSR AT LAB	DATE ANALYZED	QUALIFIER SAMPLES	ASSOCIATED
Soil	cool 4°C	07/23/01	07/24/01	08/25/01	"J"	SC-DFCOMP1

SDG #: A01-6942

The following data were qualified as estimated "J" in the indicated samples because either the absolute difference between the sample (S) and the laboratory duplicate sample (D) is > the MDL when either S and/or D are < 5 X the MDL, or the Relative Percent Difference (RPD) between S and D is > 100% for non-aqueous data (or > 50% for aqueous data) when S and D are both > 5 X the MDL:

<u>ANALYTE</u>	MATRIX	RPD/DIFFERENCE	QUALIFI	ER ASSOCIATED SAMPLES
Cr VI	Soil	Diff >MDL(20%limit)	"J"	SC-CC10, SC-CC12, SC-CC13, SC-COMP1 & SC-DC-COMP1

Page 8 of 8

Title:

Evaluation of Inorganic Data for the

Contract laboratory Program

Appendix A.2: Data Assessment Narrative

Date: Jan. 1992 Number: HW-2 Revision: 11

A.2.2 (continuation)

A.2.3 Contract Problem/Non-Compliance:

SDG #: A01-7010

1)

Mercury in sample SC-229 & Antimony in sample SC-243 not required "N" qualifier. Arsenic not require "E" qualifier in samples SC-PURM1, SC-229, SC-PHD-001, SC-PURH-01 & Form 2)

SDG #: A01-6942

Incorrect statement in case narrative - Selenium is outside the control limit due to matrix spike recovery 3) criteria, not Mercury. - Lab corrected the case narrative.

MMB/ESAT Reviewer:

Signature

Date:

Contractor Reviewer:

Verified by:

PROJECT: STANDARD CHLORINE SITE

SAMPLING DATES: JULY 23, 2001

SAMPLE #/CONCENTRATION (mg/kg)

					3/	MINITE #ICC	JINU	ENIKATION	(wi	ykg)	
	Matrix:	WATER		WATER		WATER		WATER		WATER	
Total Metals	Client ID:	SC-229		SC-243		SC-PHD-001		SC-PURH1		SC-PURM1	
	_ Lab ID:	AD114153		AD114737		AD114155		AD114154		AD114156	
Percent Solids		0.0		0.0		0.0		0.0		0.0	
Dilution Factor	IDL	1.0		1.0		1.0		1.0		1.0	·
Aluminum	200	1250	•	685000	J	18000	J	36500	J	47800	J
Antimony	20	U		57.5		79.9	J	36.4	J	40.6	
Arsenic	7.0	3120		149	J	7.7		15.1		49.7	
Barium	1.0	181	J	28.1	J	1100	J	1410	J	285	J
Beryllium	5.0	Ų		16.4		U		U		υ	
Cadmium	1.0	49.7		9.8		1.7		1.6		8.9	
Calcium	500	Ų		310000	J	238000	J	367000	J	93900	J
Chromium	2.0	499	C	11300	J	196	J	313	J	7600	J
Cobalt	5.0	U		318	J	10.1	J	17.6	J	86.6	J
Copper	10.0	150	J	648		121	J	166	J	257	J
Iron	50.0	1480000	J	522000	J	76400	J	81400	J	736000	J
Lead	10.0	392	J	585	J	138	J	112	J	216	J
Magnesium	200	482		190000	J	5640	J	11300	J	60800	J
Manganese	3.0	2710	J	6550	J	567	J	764	J	3190	J
Mercury	0.2	· U	J	U	J	U	J	Ų	J	30.7	
Nickel	10.0	ŭ		1870	J	40.0	J	74.6	J	289	J
Potassium	500	559		114000		56300	J	79100	J	15100	J
Selenium	10.0	2980		U		Ü		Ų		19.9	
Silver	3.0	U.		U		٥		U		U	
Sodium	1000	3530		1060000	-	126000	J	152000	J	176000	J
Thallium	20.0	Ų		U		21.7		20.3		166	
Vanadium	5.0	34.1		2380	J	35.7	ل	75.1	j	518	J
Zinc	20.0	357	ے	2160	J	88100	J	29600	J	30400	J

Inorganic Qualifiers

IDL - Instrument Detection Limit

U - non-detected compound

J - estimated value

B - between the instrument detection limit (IDL) and the contract required detection limit (CRDL)

PROJECT: STANDARD CHLORINE SITE

SAMPLING DATES: JULY 23, 2001

SAMPLE #/CONCENTRATION (mg/kg)

						WIII EE 11100	,,,,,,	EIALIOZIIOIA (II	.8,	···g/	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL	
Total Metals	Client ID:	SC-230		SC-241515		SC-493		SC-CC11-COMP		SC-DFCOMP1	l
	Lab ID:	AD114259		AD114257		AD114258		AD114256		AD114260	
Percent Solids		65		100		100		100		36	
Dilution Factor	IDL	1.0		1.0		1.0		1.0		1.0	
		· · · · · · · · · · · · · · · · · · ·				,		, , , , , , , , , , , , , , , , , , , ,			
Aluminum	20.00	U		135		U		Ų		4920	J
Antimony	10.00	U	J	Ũ	J	Ũ	J	U	J	U	J
Arsenic	1.00	Ü		1.2		11.4		U		4.5	J
Barium	1.00	8.3	J	U	J	U	J	טַ	J	32.0	J
Beryllium	0.50	U		U		U		U		Ų	J
Cadmium	0.50	U		U		U		U		U	J.
Calcium	100	1050		U		Ŭ		U		17400	J
Chromium	2.00	4.7		6.1	-	U		2.4		2440	J
Cobalt	2.00	. U	J	U	J	U	J	U	J	14.6	J
Copper	2.00	4.8	J	U	J	U	J	υ	J	18.0	J
Iron	15.0	136		654		255		399		11400	J
Lead	5.00	Ų	Ţ	U	J	U	J	U	J.	26.4	J
Magnesium	20.0	419		Ų		U		U		4750	J
Manganese	1.00	R		R		R		R		R	
Mercury	0.10	υ	J	U	٦	Ų	J	0.156		1.5	J
Nickel	2.00	R		R		R		R		R	
Potassium	200	U		U		613		Ų		U	J
Selenium	3.00	U	J	U	J	U	J	U	J	U	J
Silver	1.00	Ų		U		U		U		U	J
Sodium	100	398		U		*126000		714		1490	J
Thallium	6.00	U		U		U		U		U	J
Vanadium	1.00	R		R		R		R		R	
Zinc	1.00	R		R		R		R		R	

Zn: 5 X D/F

Na: 40 X D/F

Inorganic Qualifiers

IDL - Instrument Detection Limit

U - non-detected compound

J - estimated value

B - between the instrument detection limit (IDL) and the contract required detection limit (CRDL)

PROJECT: STANDARD CHLORINE SITE

SAMPLING DATES: JULY 23, 2001

SAMPLE #/CONCENTRATION (mg/kg)

 											
F - 5	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL	
Total Metals	Client ID:	SC-CC10		SC-CC11		SC-CC12		SC-CC13		SC-COMP1	
,	Lab ID:	AD114111		AD114112		AD114113		AD114114		AD114115	
Percent Solids		84.41		61.89		71.36		67.52		76.89	
Dilution Factor	IDL	1.0		1.0		1.0		1.0		1,0	
Aluminum	20.00	904		655		188		587		496	
Antimony	10.00	U	J	24.2	J	210	J	272	J	152	J
Arsenic	1.00	40.3		53.3		26.8		18.0		26.1	
Barium	1.00	9.9		34.4		5.7		20.8		15.0	
Beryllium	0.50	U		U		U		U		U	
Cadmium	0.50	11.1	J	8.1		4.8		3.5		3.5	
Calcium	100	356		3180		820		3620		1590	
Chromium	2.00	230		442		289		390		247	
Cobalt	2.00	41.3		60.0		40.3		30.3		27.3	
Copper	2.00	621		895		623		564		445	
Iron	15.0	*554000		*618000		*461000		*288000		*387000	
Lead	5.00	49.1	J	116	J	26.8	J	51.1	J	53.7	J
Magnesium	20.0	163		1120		248		931		529	
Manganese	1.00	1740	J	2710	J	1560	J	1590	J	1340	J
Mercury	0.10	*28.2		*62.9		0.775		166		U	J
Nickel	2.00	162		248		156		U		138	
Potassium	200	U		U		U		U		U	
Selenium	3.00	R		*U		*U		2.8		Ü	
Silver	1.00	U		Ū		U		Ų		U	
Sodium	100	633		2870		*142000		*125000		*71600	
Thallium	6.00	115	J	*290	J	*188	J	*U		*157	J
Vanadium	1.00	2.3		20.4		4.4		3.8		6.5	
Zinc	1.00	130	J	320	J	53.6	J	192	J	181	J
		Fe:100 X D/F	•	Fe:100 X D/F		Fe:10 X D/F		Fe:20 X D/F		Fe:10 X D/F	

Fe:100 X D/F Hg:100 X D/F Fe:100 X D/F Se:10 X D/F TI:10 X D/F

Hg:100 X D/F

Fe:10 X D/F Se:10 X D/F TI:10 X D/F

Na:10 X D/F

Fe:20 X D/F TI:20 X D/F Na:20 X D/F

Hg:100 X D/F

Fe:10 X D/F TI:10 X D/F Na:10 X D/F Hg:100 X D/F

Inorganic Qualifiers

IDL - Instrument Detection Limit

U - non-detected compound

J - estimated value

B - between the instrument detection limit (IDL) and the contract required detection limit (CRDL)

PROJECT: STANDARD CHLORINE SITE

SAMPLING DATES: JULY 23, 2001

SAMPLE #/CONCENTRATION (mg/kg)

	•	*		Q,	CIVIL EF MOC	11401	ENTRATION (M	#^9 <i>)</i>
_	Matrix:	SOIL	SOIL		SOIL			
Total Metals	Client ID:	SC-DC-COMP1	SC-LS-001		SC-CC9			
	Lab ID:	AD114117	AD114116		AD114108			
Percent Solids		73.53	72.28		73.17			
Dilution Factor	IDL	1.0	1.0		1.0			
Aluminum	20.00	10900	11900	·	478			
Antimony	10.00	25.2 J	53.0	J	U	· J		
Arsenic	1.00	5.8	26.6		48.5	•		
Barium	1.00	67.9	238		16.2			
Beryllium	0.50	Ų	U		U			
Cadmium	0.50	U	4.5		12.2	J		
Calcium	100	49900	22500		Ú	•		
Chromium	2.00	4910	4220		229			
Cobalt	2.00	29.5	72.2		40.1			
Copper	2.00	22.1	497		459			
Iron	15.0	21900	*343000		*759000			
Lead	5.00	1150 J	410	J	66.0	J		
Magnesium	20.0	11000	13100		213			
Manganese	1.00	266 J	1360	٦	2550	J		
Mercury	0.10	0.134	*18.6		U	J		
Nickel	2.00	131	343		203			
Potassium	200	992	U		U			
Selenium	3.00	U	U		*U			
Silver	1.00	U	Ų .		U	•		
Sodium	100	1170	577		193			
Thallium	6.00	U	*140	J	*286	J		-
Vanadium	1.00	150	547		6.1			
Zinc	1.00	96.1 J	*1180	J	311	J		71

Hg:100 X D/F Fe:10 X D/F

Fe:100 X D/F Se:10 X D/F

TI:10 X D/F

TI:10 X D/F

Zn:10 X D/F

Inorganic Qualifiers

IDL - Instrument Detection Limit

U - non-detected compound

J - estimated value

B - between the instrument detection limit (IDL) and the contract required detection limit (CRDL)

PROJECT: STANDARD CHLORINE SITE

SAMPLING DATE: JULY 20, 2001

SAMPLE #/CONCENTRATION (ug/L)

TCLP Compounds	Regulatory Level	Water SC-CC10 AD114143	Water SC-CC11 AD114144	Water SC-CC12 AD114145	Water SC-CC13 AD114146	Water SC-COMP1 AD114147			
Dilution Factor		1.0	1,0	1.0	1.0	1.0			
TCLP Metals									
Arsenic	5.0	U	U	84.0	8.7	۲			
Barium	100	374	657	544	244	589			
Cadmium	1.0	2.0	2.2	U	Ü	U			
Chromium	5.0	17.0	254	2570	711	444			
Lead	5.0	U	U	U	U	U			
Mercury	0.2	U J	1.7	0.413 J	0.358 J	2.2			
Selenium	1.0	Ü	U	U	U	U			
Silver	5.0	Ü	U	U	U	U			

TCLP Compounds	Regulatory Level	Water SC-DC-COMP AD114149	1	Water SC-LS-01 AD114148		Water SC-CC9 AD114140			3
Dilution Factor		1.0		1.0		1.0			
TCLP Metals								-	
Arsenic	5.0	Ü		U		U			
Barium	100	402		820		424			
Cadmium	1.0	U		3.6		2.0			
Chromium	5.0	11000		44.2		5.1			
Lead	5.0	U		Ü		U			
Mercury	0.2	U	J	Ü	J	U	Ĵ	-	
Selenium	1.0	U		U		U			
Silver	5.0	U		U		U			

ND - Not Detected

U - non-detected compound

B - detected in the corresponding method blank

J - estimated value

JN - presumptive evidence of a compound at an estimated value

PROJECT: STANDARD CHLORINE SITE

SAMPLING DATE: JULY 20-23, 2001

SAMPLE #/CONCENTRATION (MG/KG)

				State LE MOSITOLITIES (MONTO)						
CR VI Percent Solid	Regulatory Level SC-CC9 A1694201		Soil SC-CC10 A1694202	Soil SC-CC11 A1694203		Soil SC-CC12	Soil SC-CC13			
		73.2	84.4		61.9	A1694204 71,4	A1694205 67.5			
Hexavalent Chromium	1.0	U	1690	J	U	94400 J	19900	J		

CR VI Percent Solid	Regulatory Level	Soil SC-COMP1 A1694206 76.9		Soil SC-LS-01 A1694207 72.3	Soil SC-DC-COMP1 A1694208 73.5			
				12.0	7 3.3		 .,,	
Hexavalent Chromium	1.0	2160	J	U	1710	J		····

CR VI	Regulatory Level	Soil SC-GC11-COMP	Soil SC-DF-COMP1	Soil SC-230	Soit SC-241515	Soil SC-493
Percent Solid		A1701001 0.0	A1701202 36.3	A1701201 65.2	A1701002 0.0	A1701004 0.0
Hexavalent Chromium	1.0	U	920 J	U	U	U

SAMPLE #/CONCENTRATION (MG/L)

SAMPLE #CONCENTRATION (MG/L)										
Regulatory Level	Water SC-PHD-001 A1701103 1.0	Water SC-PURH1 A1701102	Water SC-PURM1 A1701104	Water SC-229 A1701101	Water SC-243 A1701105					
			1.0	10	2.0					
0.01	U	U	U	0.10	I i					
		Regulatory Level SC-PHD-001 A1701103 1.0	Water Water SC-PURH1 A1701103 A1701102 1.0 1.0	Water Water Water Water SC-PHD-001 SC-PURH1 SC-PURM1 A1701103 A1701102 A1701104 1.0 1.0 1.0	Water Water Water Water Water SC-PHD-001 SC-PURH1 SC-PURM1 SC-229 A1701103 A1701102 A1701104 A1701101 1.0 1.0 1.0					

ND - Not Detected

U - non-detected compound

B - detected in the corresponding method blank

J - estimated value

JN - presumptive evidence of a compound at an estimated value

DUPLICATES

EPA SAMPLE NO.

STL-BUHLANCE Contract: WESTON-RST Lab Name: __

Lab Code: <u>STLBFLO</u>

Case No.: <u>1397</u>

SAS No.:

SDG No.: <u>A01-70/6</u>

Matrix (soil/water): Walth

Level (low/med): Low

% Solids for Sample: NA

% Solids for Duplicate: _

Concentration Units (ug/L or mg/kg dry weight):

Analyte Control Limit Sample (S) C Duplicate (D) C RPD Q M Aluminum \$\frac{50'}{2} \] Aluminum \$\frac{50'}{2} \] Antimony \$\pmu 20 \] Arsenic \$\pmu 7 \cdot 0 \] Barium \$\frac{50'}{2} \] Barium \$\frac{50'}{2} \] Barium \$\frac{50'}{2} \] Baryllium \$\frac{50'}{2} \] Baryllium \$\frac{50'}{2} \] Chromium \$\frac{50'}{2} \] Chromium \$\frac{50'}{2} \] Cobalt \$\frac{15}{2} \cdot 0 \] Copper \$\frac{50'}{2} \] Cobalt \$\frac{15}{2} \cdot 0 \] Copper \$\frac{50'}{2} \] Lead \$\frac{50'}{2} \] Magnesium \$\frac{50'}{2} \] Magnesiu							 7,277
Antimony	Analyte			1 1	C		-
	Antimony_Arsenic_Barium_Beryllium_Cadmium_Chromium_Chromium_Cobalt_Copper_Iron_Lead_Magnesium_ManganeseMercury_Nickel_Potassium_Selenium_Silver_Sodium_Thallium_Vanadium_Zinc_Inc_IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	# 10 \$01. \$01. \$01. \$01. \$01. \$01. \$01. \$01. \$01. \$01. \$01. \$01. \$01. \$01.	36.4 15.1 1410 1.6 367000 313 17.6 166 81400 11300 74.6 79100 U 158000 20.3 75.1	18000 79.9 7.7 1100 1.7 238000 196 10.1 121 76400 138 5640 567 40.0 56300 21.7 35.7		67.9%. 72x60L 24.7%. NC 46%. 46%. 250L 31.4%. 66.8%. 29.6%. 29.6%. 20.2%	

A Part of the second

VOLATILE DATA CON'T

Sample SC-CC9 was analyzed at a dilution factor of 100 and sample SC-DC-COMP1 was analyzed at a dilution factor of 10 due to high levels of non-target compounds. Upon laboratory review it was discovered that these samples were over-diluted. As a result they were both re-analyzed outside of holding time at a dilution factor of 1.0. Both sets of data were reported.

Samples SC-CC9 MS and SC-CC9 SD were analyzed outside of holding time.

The initial calibration standard curve analyzed on 07/30/2001 exhibited a %RSD of 4 target compounds greater than 15%. However, the mean RSD of all compounds is 8.43%.

PCB DATA

Samples SC-CC9, SC-CC9 MS, and SC-CC9 SD were analyzed at a dilution factor of 10 due to high levels of target compounds. As a result all surrogates and spikes were diluted out.

Sample SC-CC10 was analyzed at a dilution factor of 10000 due to high levels of target compounds. As a result all surrogates were diluted out.

Samples SC-CC11, SC-CC12, SC-CC13, and SC-COMP1 were analyzed at a dilution factor of 5000 due to high levels of target compounds. As a result all surrogates were diluted out.

Sample SC-LS-001 was analyzed at a dilution factor of 100 due to high levels of target compounds. As a result all surrogates were diluted out.

Sample SC-DC-COMP1 exhibited surrogate recovery result above quality control limits for Tetrachloro-m-xylene. However, the sample was compliant for Decachlorobiphenyl.

METALS DATA

The results of soil samples have been corrected for percent solids and are reported on a dry weight basis.

Sample SC-CC9 MS exhibited spike recovery results below quality control limits for Antimony and Lead and above quality control limits for Merchily. Sample SC-CC9 SD exhibited spike recovery results below quality control limits for Antimony and above quality control limits for Merchy. However, the Laboratory Fortified Blank was compliant.

The following samples were diluted at their indicated dilution factor due to the original results exceeding the linear range of the curves:

METALS DATA CON'T

Sample ID	Mercury	Thallium	Antimony	Selenium	Iron	Sodium	Zinc
SC-CC9	100	10	10	10	10	-	-
SC-CC9 MS	50	10	10	10 -	100		•
SC-CC9 SD	100	10	10	10	100		
SC-CC10	100	-	-		100	•	•
SC-CC11	100	10	-	10	100	-	-
SC-CC12	-	10	-	10	10	10	•
SC-CC13	10	20	•	-	20	20	-
SC-COMP1	100	10	-	-	10	10	-
SC-LS-001	100	10	-	-	10	-	10

WET CHEMISTRY DATA

The relative percent difference (RPD) for spike recovery between samples SC-CC9 MS and SC-CC9 SD (A1694201) was outside quality control limits for Hexavalent Chromium. However, the individual recovery results were compliant. Sample SC-CC9 SD (A1694201F1) exhibited spike recovery results below quality control limits for Hexavalent Chromium. The relative percent difference (RPD) for spike recovery between the samples was outside quality control limits for Hexavalent Chromium. This can be attributed to sample matrix interference.

Sample SC-CC12 was analyzed at a dilution factor of 10 for Hexavalent Chromium due to the original result exceeding the linear range of the curve.

STL Buffalo

"I certify that this data package is in compliance with the terms and conditions of the contract both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the Laboratory Director or her designee, as verified by the following signature."

"The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety."

ROY F WESTON COVER PAGE - INORGANIC ANALYSIS DATA PACKAGE

Contract: NY99-220			SDG No.: A01-6942
Lab Code:	STL BFLO Case No.:		SAS No.:
SOW No.:	SW846 3RD ED		
	Sample ID.	Lab Sample No.	
	SC-CC10	A1694202	_
	SC-CC11	A1694203	 ,
	SC-CC12	A1694204	
	sc-cc13	A1694205	_
	SC-CC9	A1694201	·
	SC-CC9 MS	A1694201S	_
	SC-CC9 SD	A1694201SD	
	SC-COMP1	A1694206	
	SC-DC-COMP1	A1694208	
	SC-LS-001	A1694207	
			•
Were ICP	interelement corrections applied?		Yes/No YES
Were ICP	background corrections applied?		Yes/No YES
If	yes-were raw data generated before plication of background corrections?		Yes/No NO
app	arcation of background corrections:		165/110 110
Comments	3:		
contract above. I computer	y that this data package is in compliant, both technically and for completeness, Release of the data contained in this harreadable data submitted on floppy diskers the Manager's designee, as verified by	for other than the co ardcopy data package an atte has been authorize	enditions detailed ad in the ad by the Laboratory
Signature	: Hooperik for Nam	ne: <u>Susan L. Tinsmit</u>	ch
Date:)()8/27/2001 Tit	le: Laboratory Direc	tor

-1-

INORGANIC ANALYSIS DATA SHEET

SAMPLE NO.

	•	
SC-CC10	SOIL	

Contract: NY99-220

Lab Code: STL BFLO

Case No.:

SAS No.:

SDG NO.:

A01-6942

Matrix (soil/water):

SOIL

Lab Sample ID: AD114111

-

Level (low/med):

LOW

Date Received: 7/21/01

% Solids: 84

Concentration Units (ug/L or mg/kg dry weight): MG/KG

CAS No.	Analyte	Concentration	C	Q	М
7429-90-5	Aluminum	904		N	P
7440-36-0	Antimony	11.4	U	иТ	P
7440-38-2	Arsenic	40.3			P
7440-39-3	Barium	9.9	1]	P
7440-41-7	Beryllium	0.57	ט	1	P
7440-43-9	Cadmium	11.1		17	P
7440-70-2	Calcium	356	T.]	P
7440-47-3	Chromium	230		1	P
7440-48-4	Cobalt	41.3	T		P
7440-50-8	Copper	621			P
7439-89-6	Írón	554000	Ī		P
7439-92-1	Lead	49.1		иТ	P
7439-95-4	Magnesium	163	Ī		P
7439-96-5	Manganese	1740	1	EJ.	P
7440-02-0	Nickel	162	I		P
7440-09-7	Potassium	228	ט		P
7782-49-2	Selenium	7.4	1	14-R	P
7439-97-6	Mercury	28.2			cv
7440-22-4	Silver	1.1	U]	P
7440-23-5	Sodium	633			P
7440-28-0	Thallium	115	1	1.3	P
7440-62-2	Vanadium	2.3	T	1	P
7440-66-6	Zinc	130	Ī	EJ	P

Color Before:	BROWN	Clarity Before:	CLOUDY	Texture:	PAINT
Color After:	YELLOW	Clarity After:	CLOUDY	Artifacts:	
Comments:					

INORGANIC ANALYSIS DATA SHEET

SAMPLE NO.

		TCLP	SC-CC10
--	--	------	---------

Contract: NY99-220

Lab Code: STL BFLO

Case No.:

LOW

SAS No.:

SDG NO.: A01-6942

Matrix (soil/water):

Level (low/med):

WATER

Lab Sample ID: AD114143

Date Received: 7/21/01

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	C	ō	M.
7440-38-2	Arsenic	7.0	U		P
7440-39-3	Barium	374			P
7440-43-9	Cadmium	2.0	T	l	P
7440-47-3	Chromium	17.0	Ī	1	P
7439-92-1	Lead	10.0	U		P
7782-49-2	Selenium	10.0	טֹן]	P
7439-97-6	Mercury	0.200	ט	J	cv
7440-22-4	Silver	3.0	ט	l	P

Color	Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	NONE
Color	After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Commen	its:				• •	

INORGANIC ANALYSIS DATA SHEET

SAMPLE	NO
--------	----

00 0011	CATT	
SC-CC11	SOTT	
ł.		

Contract: NY99-220

Lab Code: STL BFLO

Case No.:

SAS No.:

SDG NO.: A01-6942

Matrix (soil/water):

SOIL

Lab Sample ID: AD114112

Level (low/med):

LOW

Date Received: 7/21/01

% Solids: 62

Concentration Units (ug/L or mg/kg dry weight): MG/KG

		the state of the s			
CAS No.	Analyte	Concentration	C	Q	М
7429-90-5	Aluminum	655		N	P
7440-36-0	Antimony	24.2	1	NJ	P
7440-38-2	Arsenic	53.3	1		P
7440-39-3	Barium	34.4			P
7440-41-7	Beryllium	0.82	ש		P
7440-43-9	Cadmium	8.1			P
7440-70-2	Calcium	3180	1		P
7440-47-3	Chromium	442	1	1	P
7440-48-4	Cobalt	60.0	1	1	P
7440-50-8	Copper	895	Ī		P
7439-89-6	Iron	618000	1		P
7439-92-1	Lead	116	1	иЛ	₽
7439-95-4	Magnesium	1120	1		P
7439-96-5	Manganese	2710	Ī	E	P
7440-02-0	Nickel	248	1		P
7440-09-7	Potassium	330	ט		P
7782-49-2	Selenium	49.5	ש	N	P
7439-97-6	Mercury	62.9	1	4	CV
7440-22-4	Silver	1.6	ט		P
7440-23-5	Sodium	2870			Р
7440-28-0	Thallium	290		13	P
7440-62-2	Vanadium	20.4	1]	P
7440-66-6	Zinc	320		EJ	P

Color	Before:	BROWN	Clarity Before:	CLOUDY	Texture:	PAINT
Color	After:	YELLOW	Clarity After:	CLOUDY	Artifacts:	
Commer	its:					
				P		

INORGANIC ANALYSIS DATA SHEET

SAMPLE	NO
--------	----

SC-CC11	TCLP	

Contract: NY99-220

Lab Code: STL BFLO

Case No.:

SAS No.:

SDG NO.:

A01-6942

Matrix (soil/water):

Level (low/med):

WATER

Lab Sample ID: AD114144

Date Received: 7/21/01

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	C	Q	М
7440-38-2	Arsenic	7.0	U		P
7440-39-3	Barium	657			P
7440-43-9	Cadmium	2.2	1 1	-	P
7440-47-3	Chromium	254	1. 1		P
7439-92-1	Lead	10.0	ן ט		P
7782-49-2	Selenium	10.0	U		P
7439-97-6	Mercury	1.7	1 1		cv
7440-22-4	Silver	3.0	ט	7215	l P

Color Before:	YELLOW	Clarity Before:	CLEAR	Texture:	NONE
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:			**		
·					

INORGANIC ANALYSIS DATA SHEET

031	m	T 73	NO
SA	ME.	-	NO

SC-CC12 SO	İL
------------	----

Contract: NY99-220

Lab Code: STL BFLO

Case No.:

SAS No.:

SDG NO.:

A01-6942

Matrix (soil/water):

SOIL

Lab Sample ID: AD114113

Level (low/med):

Date Received: 7/21/01

% Solids: 71

Concentration Units (ug/L or mg/kg dry weight): MG/KG

					·
CAS No.	Analyte	Concentration	C	Q	Ж
7429-90-5	Aluminum	188	İ	N	P
7440-36-0	Antimony	210		N	P
7440-38-2	Arsenic	26.8		1	P
7440-39-3	Barium	5.7	1		P
7440-41-7	Beryllium	0.71	ט	1:	P
7440-43-9	Cadmium	4.8	1	1	P
7440-70-2	Calcium	820		1	P
7440-47-3	Chromium	289			P
7440-48-4	Cobalt	40.3	1	1	P
7440-50-8	Copper	623			P
7439-89-6	Iron	461000	1		P
7439-92-1	Lead	26.8		N J	P
7439-95-4	Magnesium	248	1		P
7439-96-5	Manganese	1560	1	EJ	P
7440-02-0	Nickel	156	1	1	P
7440-09-7	Potassium	286	שׁ	l	P
7782-49-2	Selenium	42.9	ט	N	P
7439-97-6	Mercury	0.775	1	1	cv
7440-22-4	Silver	1.4	[ט]	P
7440-23-5	Sodium	142000		<u> </u>	P
7440-28-0	Thallium	188		IT	P
7440-62-2	Vanadium	4.4	Ī		P
7440-66-6	Zinc	53.6	1	EJ	P

Color Before:	BROWN	Clarity Before:	CLOUDŸ	Texture:	SILT
Color After:	YELLOW	Clarity After:	CLOUDY	Artifacts:	
Comments:					

-1-

INORGANIC ANALYSIS DATA SHEET

~ ~	200	7 77	NO	
35 A	MP	1 . P.	MC	_

SC-CC12	TCLP

Contract: NY99-220

Lab Code: STL BFLO

Case No.:

SAS No.:

SDG NO.:

A01-6942

Matrix (soil/water):

WATER

Lab Sample ID: AD114145

Level (low/med):

LOW

Date Received: 7/21/01

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	c	Q	М
7440-38-2	Arsenic	84.0	+	,	P
7440-39-3	Barium	544			P
7440-43-9	Cadmium	1.0	u		P
7440-47-3	Chromium	2570			P
7439-92-1	Lead	10.0	ט		. P
7782-49-2	Selenium	10.0	ט		P
7439-97-6	Mercury	0.413	1 1	7	cv
7440-22-4	Silver	3.0	ט		P

Color Before:	ORANGE	Clarity Before:	CLOUDY	Texture:	NONE
Color After:	YELLOW	Clarity After:	CLOUDY	Artifacts:	
Comments:					
<u> </u>					

-1-

INORGANIC ANALYSIS DATA SHEET

SAMPLE NO	S	A	MP	LE	N	0

SC-CC13	SOIL

Contract: NY99-220

Lab Code: STL BFLO

Case No.:

SAS No.:

SDG NO.:

A01-6942

Matrix (soil/water):

SOIL

Lab Sample ID: AD114114

Level (low/med):

LOW

Date Received: 7/21/01

% Solids: 68

Concentration Units (ug/L or mg/kg dry weight):

MG/KG

CAS No.	Analyte	Concentration	C	Q	М
7429-90-5	Aluminum	587	1	N	P
7440-36-0	Antimony	272	1	NJ	P
7440-38-2	Arsenic	18.0	1	1	P
7440-39-3	Barium	20.8	Ī	1	P
7440-41-7	Beryllium	0.77	טן		P
7440-43-9	Cadmium	3.5	T		P
7440-70-2	Calcium	3620			P
7440-47-3	Chromium	390	1	1	P
7440-48-4	Cobalt	30.3	1		P
7440-50-8	Copper	564	1	T	P
7439-89-6	Iron	288000	1	<u>l</u>	P
7439-92-1	Lead	51.1	1	NJ	P
7439-95-4	Magnesium	931			P
7439-96-5	Manganese	1590	1	EJ	P
7440-02-0	Nickel	166	1	I.	P
7440-09-7	Potassium	309	ש		P
7782-49-2	Selenium	4.6	ט	N	P
7439-97-6	Mercury	2.8			cv
7440-22-4	Silver	1.5	ט	1	P
7440-23-5	Sodium	125000			P
7440-28-0	Thallium	185	טן	<u> </u>	P
7440-62-2	Vanadium	3.8	Π	l	P
7440-66-6	Zinc	192		EJ	P

Color Before	BROWN	Clarity Before:	CLOUDY	Texture:	SILT
Color After:	YELLOW	Clarity After:	CTONDA	Artifacts:	
Comments:					
	•				

INORGANIC ANALYSIS DATA SHEET

SAMPLE	NO
--------	----

SC-CC13 TCLP

Con	tra	ct	:	NY9	ġ	220
		~~	•	44.2	.	220

Lab Code: STL BFLO

Case No.:

SAS No.:

SDG NO.: A01-6942

Matrix (soil/water):

WATER

Lab Sample ID: AD114146

Level (low/med):

LOW

Date Received: 7/21/01

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	C	Q	М
7440-38-2	Arsenic	8.7			P
7440-39-3	Barium	244	T		P
7440-43-9	Cadmium	1.0	ט		P
7440-47-3	Chromium	711		ĺ	P
7439-92-1	Lead	10.0	טן	1	P
7782-49-2	Selenium	10.0	טן	1	P
7439-97-6	Mercury	0.358	T	J	CV
7440-22-4	Silver	3.0	ט	1	P

Color 1	Before:	ORANGE	Clarity Before:	CLOUDY	Texture:	NONE
Color 1	After:	YELLOW	Clarity After:	CLOUDY	Artifacts:	
Comment	ts:	<u> </u>				

-1-

INORGANIC ANALYSIS DATA SHEET

SAMPLE NO.

Contract: NY99-220

Lab Code: STL BFLO

Case No.:

SAS No.:

SDG NO.: A01-6942

Matrix (soil/water):

SOIL

Lab Sample ID: AD114115

Level (low/med):

Date Received: 7/21/01

% Solids: 77

Concentration Units (ug/L or mg/kg dry weight):

MG/KG

CAS No.	Analyte	Concentration	C	Q	м
7429-90-5	Aluminum	496	1	N	P
7440-36-0	Antimony	152		NJ	P
7440-38-2	Arsenic	26.1	1	Ţ	P
7440-39-3	Barium	15.0]	P
7440-41-7	Beryllium	0.65	U	1	P
7440-43-9	Cadmium	3.5	Ī		P
7440-70-2	Calcium	1590]	P
7440-47-3	Chromium	247	1	1	P
7440-48-4	Cobalt	27.3	Ī	1	P
7440-50-8	Copper	445			P
7439-89-6	Iron	387000			P
7439-92-1	Lead	53.7	1	N J	P
7439-95-4	Magnesium	529		J	P
7439-96-5	Manganese	1340	Ī	E	P
7440-02-0	Nickel	138	1		P
7440-09-7	Potassium	260	ט]	P
7782-49-2	Selenium	3.9	ש	N .	P
7439-97-6	Mercury	12.7	ט	17	cv
7440-22-4	Silver	1.3	U		P
7440-23-5	Sodium	71600]	P
7440-28-0	Thallium	157	1		P
7440-62-2	Vanadium	6.5			P
7440-66-6	Zinc	181		EJ	P

Color Before:	BROWN	Clarity Before:	CLOUDY	Texture:	PAINT
Color After:	AETTOM	Clarity After:	CLOUDY	Artifacts:	
Comments:					
·					

-1-

INORGANIC ANALYSIS DATA SHEET

SA	MPLE	NO

SC-COMP1	TCLP

Contract: NY99-220

Lab Code: STL BFLO

Case No.:

SAS No.:

SDG NO.:

A01-6942

Matrix (soil/water):

Level (low/med):

WATER

LOW

Lab Sample ID: AD114147

Date Received: 7/21/01

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	c	Q	М
7440-38-2	Arsenic	7.0	U		P
7440-39-3	Barium	589	1		P
7440-43-9	Cadmium	1.0	ט		P
7440-47-3	Chromium	444	1 1	· · ·	P
7439-92-1	Lead	10.0	ט		P
7782-49-2	Selenium	10.0	ע		P
7439-97-6	Mercury	2.2	1 1		cv
7440-22-4	Silver	3.0	ע		P

Color Before:	AETTOM	Clarity Before:	CTOUDA	Texture:	NONE
Color After:	YELLOW	Clarity After:	CLOUDA	Artifacts:	
Comments:	•				
· _					

-1-

INORGANIC ANALYSIS DATA SHEET

SAMPLE NO.

SC-DC	:-COMP1	SOIL

Contract: NY99-220

Lab Code: STL BFLO

Case No.:

SAS No.:

SDG NO.:

A01-6942

Matrix (soil/water):

SOIL

Lab Sample ID: AD114117

Level (low/med):

Date Received: 7/21/01

% Solids: 74

Concentration Units (ug/L or mg/kg dry weight):

MG/KG

CAS No.	Analyte	Concentration	C	Q	м
7429-90-5	Aluminum	10900		N	P
7440-36-0	Antimony	25.2		N J	P
7440-38-2	Arsenic	5.8	Ī		P
7440-39-3	Barium	67.9		}	P
7440-41-7	Beryllium	0.71	ט	1	P
7440-43-9	Cadmium	0.71	ט	1	P
7440-70-2	Calcium	49900		1	P
7440-47-3	Chromium	4910	1		P
7440-48-4	Cobalt	29.5		1	P
7440-50-8	Copper	22.1		1	P
7439-89-6	Iron	21900		1	P
7439-92-1	Lead	1150]	N	P
7439-95-4	Magnesium	11000			P
7439-96-5	Manganese	_266		EJ	P
7440-02-0	Nickel	131		}	P
7440-09-7	Potassium	992		1	P
7782-49-2	Selenium	4.2	ט	N	P
7439-97-6	Mercury	0.134			cv
7440-22-4	Silver	1.4	ט		P
7440-23-5	Sodium	1170			P
7440-28-0	Thallium	8.5	ט	1	P
7440-62-2	Vanadium	150			P
7440-66-6	Zinc	96.1	ı	EJ	P

Color Before:	BROWN	Clarity Before:	CLOUDY	Texture:	CLAY
Color After:	GRAY	Clarity After:	CLOUDY	Artifacts:	
Comments:				1	
· <u></u>					

INORGANIC ANALYSIS DATA SHEET

SAMPLE NO	SAMPLE I	ON
-----------	----------	----

SC-DC-COMP1	TCLP
-------------	------

Contract: NY99-220

Lab Code: STL BFLO

Case No.:

SAS No.:

SDG NO.: A01-6942

Matrix (soil/water):

WATER

Lab Sample ID: AD114149

Date Received: 7/21/01

Level (low/med):

LOW

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	C	Q	М
7440-38-2	Arsenic	7.0	U	 	P
7440-39-3	Barium	402		1	P
7440-43-9	Cadmium	1.0	ט	1	P
7440-47-3	Chromium	11000	T		P
7439-92-1	Lead	10.0	טן		P
7782-49-2	Selenium	10.0	ע	1	P
7439-97-6	Mercury	0.200	ש	13	cv
7440-22-4	Silver	3.0	ש	l	P

Color	Before:	YELLOW	Clarity Before:	CLEAR	Texture:	NONE
Color	After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Commen	ts:					
	-					

-1-INORGANIC ANALYSIS DATA SHEET

SAMPLE NO.

Contract: NY99-220

Lab Code: STL BFLO

Case No.:

SAS No.:

SDG NO.:

A01-6942

Matrix (soil/water):

SOIL

Lab Sample ID: AD114116

Level (low/med):

LOW

Date Received: 7/21/01

% Solids: 72

Concentration Units (ug/L or mg/kg dry weight):

MG/KG

CAS No.	Analyte	Concentration	c	Q	М
7429-90-5	Aluminum	11900	+	N	P
7440-36-0	Antimony	53.0	T	N T	P
7440-38-2	Arsenic	26.6	Π		P
7440-39-3	Barium	238			P
7440-41-7	Beryllium	0.71	טן	1	P
7440-43-9	Cadmium	4.5			P
7440-70-2	Calcium	22500		1	P
7440-47-3	Chromium	4220	Ī	1	P
7440-48-4	Cobalt	72.2	J	Ī	P
7440-50-8	Copper	497	T	1	P
7439-89-6	Iron	343000	1	i T	P
7439-92-1	Lead	410	1	N J	P
7439-95-4	Magnesium	13100			P
7439-96-5	Manganese	1360	T	EJ	P
7440-02-0	Nickel	343	T	l	P
7440-09-7	Potassium	282	טן	Ī	P
7782-49-2	Selenium	4.2	שׁ	N	P
7439-97-6	Mercury	18.6			cv
7440-22-4	Silver	1.4	U	1	P
7440-23-5	Sodium	577	Ī.		P
7440-28-0	Thallium	140		TJ	P
7440-62-2	Vanadium	547	Τ	1	P
7440-66-6	Zinc	1180	Τ	EJ	P

Color	Before:	BROWN	Clarity Before:	CLOUDY	Texture:	PAINT
Color :	After:	GREEN	Clarity After:	CTONDA	Artifacts:	
Commen	ts:					

INORGANIC ANALYSIS DATA SHEET

SA	MPLE	NO.

SC-LS-001	TCLP
• 1	

Contract: NY99-220

Lab Code: STL BFLO

Case No.:

SAS No.:

SDG NO.: A01-6942

Matrix (soil/water):

WATER

Lab Sample ID: AD114148

Level (low/med):

LOW

Date Received: 7/21/01

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	c	Q	м
7440-38-2	Arsenic	7.0	U		P
7440-39-3	Barium	820	Τ]	P
7440-43-9	Cadmium	3.6	1		P
7440-47-3	Chromium	44.2	1	1	P
7439-92-1	Lead	10.0	ט	1	P
7782-49-2	Selenium	10.0	ט	1	P
7439-97-6	Mercury	0.200	ט	13	CV
7440-22-4	Silver	3.0	ט		P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	NONE
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:					

-1-

INORGANIC ANALYSIS DATA SHEET

SAMPLE NO.

SC-CC9	SOIL	•

Contract: NY99-220

Lab Code: STL BFLO

Case No.:

SAS No.:

SDG NO .:

A01-6942

Matrix (soil/water):

SOIL

Lab Sample ID: AD114108

Level (low/med):

Date Received: 7/21/01

% Solids: 73

Concentration Units (ug/L or mg/kg dry weight): MG/KG

CAS No.	Analyte	Concentration	c	Q	М
7429-90-5	Aluminum	478	1	X ^a	P
7440-36-0	Antimony	137	U	И	P
7440-38-2	Arsenic	48.5]	I	P
7440-39-3	Barium	16.2	1	l .	P
7440-41-7	Beryllium	0.68	טן	1	P
7440-43-9	Cadmium	12.2	1	J	P
7440-70-2	Calcium	137	ש	<u> </u>	P
7440-47-3	Chromium	229	-	1	P
7440-48-4	Cobalt	40.1	1	J	P
7440-50-8	Copper	459			P
7439-89-6	Iron	759000		1	P
7439-92-1	Lead	66.0		L M	P
7439-95-4	Magnesium	213	1		P
7439-96-5	Manganese	2550	1	EJ	P
7440-02-0	Nickel	203		1	P
7440-09-7	Potassium	273	ט		P
7782-49-2	Selenium	41.0	ט	И	P
7439-97-6	Mercury	13.7	ט	15	cv
7440-22-4	Silver	1.4	ש		P
7440-23-5	Sodium	193		Γ.	P
7440-28-0	Thallium	286	1	17	P
7440-62-2	Vanadium	6.1			.P
7440-66-6	Zinc	311		EJ	P

Color Before	: BROWN	Clarity Before:	CLOUDY	Texture:	PAINT
Color After:	YELLOW	Clarity After:	CLOUDY	Artifacts:	
Comments:			No.		
-				4	

INORGANIC ANALYSIS DATA SHEET

SAMPLE NO.

	•		
88 888	MAT TO		
SC-CC9	TCLP	-	

Contract: NY99-220

Lab Code: STL BFLO

Case No.:

SAS No.:

SDG NO.:

A01-6942

Matrix (soil/water):

WATER

Lab Sample ID: AD114140

Level (low/med):

Date Received: 7/21/01

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	C	Q	М
7440-38-2	Arsenic	7.0	Ü		P
7440-39-3	Barium	424	1	l	P
7440-43-9	Cadmium	2.0	1	1	P
7440-47-3	Chromium	5.1		ļ	P
7439-92-1	Lead	10.0	טן]	P
7782-49-2	Selenium	10.0	U		P
7439-97-6	Mercury	0.200	שן	T T	cv
7440-22-4	Silver	3.0	U	1	P

Color Before	: COLORLESS	Clarity Before:	CLEAR	Texture:	NONE
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:			,		

001426 Client Sample No.

SC-CC9		
i .		*

Lab Name: STL Buffalo

Contract:

Lab Code: RECNY

Case No.:

SAS No.:

SDG No.: 6942

Matrix (soil/water): SOIL

Lab Sample ID: A1694201

% Solids:

Parameter Name	Units of Measure	Result	С	Q	М	Method Number	Analyzed Date
Hexavalent Chromium - Total	MG/KG	1.0	ប		A	7196A	07/27/2001

Comments:	•		
• •		•	
	 	A TO THE PROPERTY OF THE PROPE	
	 	a constitution of the second o	

Client Sample No. 430

Lab Name: STL Buffalo Contract:	
	to • 6942

Matrix (soil/water): SOIL

Lab Sample ID: A1694202

% Solids:

84.4

Date Samp/Recv: <u>07/20/2001</u> <u>07/21/2001</u>

Parameter Name	Units of Measure	Result	С	Q	М	Method Number	Analyzed Date
Hexavalent Chromium - Total	MG/KG	1690		ゴ	A	7196A	07/27/2001

Comments:	•		
	A STATE OF THE STA	 · · · · · · · · · · · · · · · · · · ·	

Client Sample No.

	•			SC-CC11	
Lab Name: <u>STL Buffalo</u>	!	Contract:	·	DC CCII	

SAS No.: ____

Lab Code: RECNY

SDG No.: 6942

Matrix (soil/water): SOIL

Lab Sample ID: A1694203

% Solids:

Case No.:

Parameter Name	Units of Measure	Result	С	Q	M	Method Number	Analyzed Date
Hexavalent Chromium - Total	MG/KG	1.0	U		A	7196A	07/27/2001

Comments:						
				· · · · · · · · · · · · · · · · · · ·		
						

Client Sample No.

Lab Name: <u>STL Buffa</u>	<u>lo</u>	Contract:	SC-CC12
Lab Code: <u>RECNY</u>	Case No.:	SAS No.:	SDG No.: 6942
Matrix (soil/water)	: SOIL	Lab Sample ID:	A1694204
% Solids:	_71.4	Date Samp/Recv:	07/20/2001 07/21/2001

Parameter Name	Units of Measure	Result	С	Q	М	Method Number	Analyzed Date
Hexavalent Chromium - Total	MG/KG	94400		7	A	7196A	07/27/2001

ments:			
	, ·	:	

Client Sample No. 433

	, , , , , , , , , , , , , , , , , , ,

Lab Name: STL Buffalo

Contract: ____

Lab Code: RECNY

Case No.:

SAS No.: ____

SDG No.: 6942

Matrix (soil/water): SOIL

Lab Sample ID: A1694205

% Solids:

67.5

	Units of Measure	Result	С	Q	М	Method Number	Analyzed Date
Hexavalent Chromium - Total	MG/KG	19900		h	A	7196A	07/27/2001

Comments:			
	· · · · · · · · · · · · · · · · · · ·		

001434

Client Sample No.

		SC-COMP1
Lab Name: <u>STL Buffalo</u>	Contract:	

Lab Code: RECNY Case No.: SAS No.: SDG No.: 6942

Matrix (soil/water): SOIL Lab Sample ID: A1694206

% Solids: 76.9 Date Samp/Recv: 07/20/2001 07/21/2001

Parameter Name	Units of Measure	Result	С	Q	М	Method Number	Analyzed Date
Hexavalent Chromium - Total	MG/KG	2160		-	A	7196A	07/27/2001

Comments:				
Willettes.				
		 	and the second s	
	,			

Client Sample No.

SC-LS-001	

Lab Name: SIL Buffalo

Contract:

Lab Code: RECNY

Case No.: ____

SAS No.: ____

SDG No.: 6942_

Matrix (soil/water): SOIL

Lab Sample ID: A1694207

% Solids:

	Units of Measure	Result	C	Q	м	Method Number	Analyzed Date
Hexavalent Chromium - Total	MG/KG	1.0	Ū		A	7196A	07/27/2001

ents:					
	 				
		 Art and a second		<u> </u>	

001436 Client Sample No.

Í	
00 00 00001	
SC-DC-COMP1	

Lab Name: STL Buffalo

Contract: _

Lab Code: <u>RECNY</u>

Case No.: ____

SAS No.:

SDG No.: 6942

Matrix (soil/water): SOIL

Lab Sample ID: A1694208

% Solids:

<u>73.5</u>

Date Samp/Recv: <u>07/20/2001</u> <u>07/21/2001</u>

Parameter Name	Units of Measure	Result	С	Q	М	Method Number	Analyzed Date
Hexavalent Chromium - Total	MG/KG	1710		ħ	Α	7196A	07/27/2001

Comments:			
,			
- <u> </u>	 	 - 1, 1, 2, 4, 11, 12, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14	

SAMPLE DATA SUMMARY PACKAGE

STL Buffalo

SDG NARRATIVE

Laboratory Name:

STL Buffalo

Laboratory Code:

STL Buffalo

Contract Number:

NY99-220

Sample Identifications:

SC-CC11-COMP

SC-DFCOMP1

SC-DFCOMP1 MS

SC-DFCOMP1 SD

SC-PHD-01

SC-PURH1

SC-PURM1

SC-T01-002

SC-T01-013

00 101 015

SC-T01-0130

SC-T01-043

SC-T01-069

SC-T01-087

SC-T01-103

SC-T02-111

SC-T02-119

SC-T02-154

SC-T02-157

SC-T02-178

SC-T02-194

SC-T03-214

SC-T03-221

SC-T03-224

SC-T03-290

SC-T03-200

SC-T03-325

3C-103-322

SC-T04-333

SC-T04-355

SC-T04-362

SC-T04-402

SC-T04-405

SC-228

SC-229

SC-230

SC-241515

SC-243 (A01-7010)

SC-243 (A01-7011)

SC-493

PCB DATA CON'T

Sample SC-493 was analyzed at a dilution factor of 2 due to high levels of target compounds.

Sample SC-PURM1 was analyzed at a dilution factor of 50 due to high levels of target compounds. All surrogates were diluted out.

Sample SC-243 (A1701005) was analyzed at a dilution factor of 100 due to high levels of target compounds. All surrogates were diluted out.

Sample SC-243 (A1701105) was analyzed at a dilution factor of 200 due to high levels of target compounds. All surrogates were diluted out.

Samples SC-228 and SC-229 exhibited surrogate recovery results above quality control limits for Decachlorobiphenyl. However, the samples were compliant for Tetrachloro-m-xylene.

Samples SC-T01-103, SC-T02-119, and SC-T02-119 MS exhibited surrogate recovery results above quality control limits for Tetrachloro-m-xylene. However, the samples were compliant for Decachlorobiphenyl.

Samples SC-T02-119 SD and SC-T03-224 exhibited surrogate recovery results below quality control limits for Decachlorobiphenyl and above quality control limits for Tetrachloro-m-xylene.

The relative percent difference (RPD) for spike recovery between samples SC-PHD-001 MS and SC-PHD-001 SD was above quality control limits for Aroclor 1016. However, the individual recovery results were compliant.

Samples SC-T02-119 MS and SC-T02-119 SD exhibited spike recovery results above quality control limits for Aroclor 1254.

METALS DATA

The results for soil samples have been corrected for percent solids and are reported on a dry weight basis.

Sample SC-DFCOMP1 MS exhibited spike recovery results below quality control limits for Aluminum, Antimony, Barium, Cobalt, Copper, Lead, Magnesium, Manganese, Nickel, Vanadium, and Zinc. The sample also exhibited spike recovery results above quality control limits for Mercury. However, the Laboratory Fortified Blank was compliant.

Sample SC-DFCOMP1 SD exhibited spike recovery results below quality control limits for Aluminum, Antimony, Barium, Copper, Lead, Magnesium, Manganese, Nickel, Vanadium, and Zinc. The sample also exhibited spike recovery results above quality control limits for Mercury. However, the Laboratory Fortified Blank was compliant.

METALS DATA CON'T

Sample SC-241515 was analyzed at a dilution factor of 5 for Zinc on ICP Run A080101 due to the original results exceeding the linear range of the curve.

Sample SC-493 was analyzed at a dilution factor of 40 for Sodium on ICP Run A080101 due to the original results exceeding the linear range of the curve.

Samples SC-243, SC-243 MS, SC-243 SD were analyzed at a dilution factor of 10 for Sodium on ICP Run B080501 due to the original results exceeding the linear range of the curve.

Sample SC-229 was analyzed at a dilution factor of 50 for Antimony and 50 for Thallinm on ICP/MS Run 010810A. The sample was also analyzed at a dilution factor of 10 for all other elements on ICP Run B080601 due to very strong matrix effects.

Sample SC-PURH1 was analyzed at a dilution factor of 10 for Zinc due to the original result exceeding the linear range of the curve.

Sample SC-PHD-001 was analyzed at a dilution factor of 40 for Zinc due to the original result exceeding the linear range of the curve.

Sample SC-PURM1 was analyzed at a dilution factor of 10 for Zinc, 10 for Iron, and 10 for Sodium due to the original results exceeding the linear range of the curves.

Samples SC-DFCOMP1 MS SC-DFCOMP1 SD were analyzed at a dilution factor of 5 for Mercury due to the original results exceeding the linear range of the curve.

Sample SC-PURM1 was analyzed at a dilution factor of 10 for Mercury due to the original results exceeding the linear range of the curve.

WET CHEMISTRY DATA

Sample SC-243 (A1701105) was analyzed at a dilution factor of 2 for Total Hexavalent Chromium due to sample matrix interference.

Sample SC-DFCOMP1 was analyzed outside of holding time requirements for Total Hexavalent Chromium.

STL Buffalo

"I certify that this data package is in compliance with the terms and conditions of the contract both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the Laboratory Director or her designee, as verified by the following signature."

Susan L. Tinsmith

Laboratory Director

Date

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

DATA COMMENT PAGE

ORGANIC DATA QUALIFIERS

ND or U Indicates compound was analyzed for, but not detected.

- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank, as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at the secondary dilution factor.
- N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search. It is applied to all TIC results.
- P This flag is used for a pesticide/Aroclor target analyte when there is greater than 25% difference for detected concentrations between the two GC columns. The lower of the two values is reported on the data page and flagged with a "P".
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- Indicates coelution.
- * Indicates analysis is not within the quality control limits.

INORGANIC DATA QUALIFIERS

ND or U Indicates element was analyzed for, but not detected. Report with the detection limit value.

- J or B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.
- N Indicates spike sample recovery is not within the quality control limits.
- K Indicates the post digestion spike recovery is not within the quality control limits.
- S Indicates value determined by the Method of Standard Addition.
- M Indicates duplicate injection results exceeded quality control limits.
- W Post digestion spike for Furnace AA analysis is out of quality control limits (85-115%) while sample absorbance is less than 50% of spike absorbance.
- E Indicates a value estimated or not reported due to the presence of interferences.
- H Indicates analytical holding time exceedance. The value obtained should be considered an estimate.
- Indicates analysis is not within the quality control limits.
- + Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995.

ROY F WESTON COVER PAGE - INORGANIC ANALYSIS DATA PACKAGE

Contract: N	TY99-220	SDG No.: 7010	
Lab Code: STI	LBFLO Case No.:		SAS No.:
SOW No.:		*****	
	Sample ID.	Lab Sample No.	
	SC-229	<u>A1701101</u>	
	SC-230	A1701201	· ·
	SC-241515	A1701002	
	SC-243	A1701105	
	SC-243MS	A1701105S	·
	SC-243SD	A1701105SD	
	SC-493	A1701004	·
	SC-CC11-COMP	A1701001	
	SC-DFCOMP1	A1701202	
	SC-DFCOMP1 MS	A1701202S	
If yes-	ckground corrections applied? -were raw data generated before ation of background corrections?		Yes/No YES Yes/No NO
	and the second section of the second section of the second section of the second section of the second second second second section second sec		
contract, bo above. Rele computer-rea	nat this data package is in complete that technically and for completer ease of the data contained in this dable data submitted on floppy of the Manager's designee, as verifications.	ess, for other than s hardcopy data pack liskette has been aut	the conditions detailed age and in the horized by the Laboratory
Signature:	mi Jan	Name: Susan L. T.	insmith
Date:(5/29/9	Title: Laboratory	Director

ROY F WESTON COVER PAGE - INORGANIC ANALYSIS DATA PACKAGE

o Code: STLBI	27.7.22		SDG No.:	-
	FLO Case No.:		SAS No.:	
W No.:				
	Sample ID.	Lab Sample No.		
	SC-DFCOMP1 SD	A1701202SD	:	
	SC-PHD-001	A1701103		
	SC-PURH1	A1701102		
	SC-PURM1	A1701104		
		·		
•				
If yes-w	ground corrections applied? ere raw data generated before		Yes/No	
applicat	ion of background corrections?		Yes/No	NO
mments:				
	· · · · · · · · · · · · · · · · · · ·			
				·····

INORGANIC ANALYSIS DATA SHEET

SAMPLE D	10.	
		
SC-PURM1		

Contract: NY99-220

Lab Code: STLBFLO

Case No.:

SAS No.:

SDG NO.:

7010

Matrix (soil/water):

WATER

Lab Sample ID: AD114156

Level (low/med):

LOW

Date Received: 7/24/01

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	C	Q	м
7429-90-5	Aluminum	47800	1	EJ	P
7440-36-0	Antimony	40.6	1		P
7440-38-2	Arsenic	49.7	1	Z.	P
7440-39-3	Barium	285	1	EJ	P
7440-41-7	Beryllium	5.0	שׁ		P
7440-43-9	Cadmium	8.9		1	P
7440-70-2	Calcium	93900	1	17	P
7440-47-3	Chromium	7600	1.	EJ	P
7440-48-4	Cobalt	86.6		13	P
7440-50-8	Copper	257	<u> </u>	13	P
7439-89-6	Iron	736000	j	EJ	P
7439-92-1	Lead	216	T	13	P
7439-95-4	Magnesium	60800	Ī	EJ	P
7439-96-5	Manganese	3190		EJ	P
7440-02-0	Nickel	289	Ī	13	P
7440-09-7	Potassium	15100	Ī	13	P
7782-49-2	Selenium	19.9]	P
7439-97-6	Mercury	30.7	-	1	CV
7440-22-4	Silver	3.0	U	Ī	P
7440-23-5	Sodium	176000	1	EJ	P
7440-28-0	Thallium	166			P
7440-62-2	Vanadium	518		EJ	P
7440-66-6	Zinc	30400	1	EJ	P

Color Before:	ORANGE	Clarity Before:	OPAQUE	Texture:	HEAVY
Color After:	BROWN	Clarity After:	CLOUDY	Artifacts:	
Comments:					
	1				

-1-

INORGANIC ANALYSIS DATA SHEET

SAMPLE	MO

SC-229

Contract: NY99-220

Lab Code: STLBFLO

Case No.:

SAS No.:

SDG NO.:

7010

Matrix (soil/water):

WATER

Lab Sample ID: AD114153

.114150

Level (low/med):

T.OW

Date Received: 7/24/01

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	C	Q	М
7429-90-5	Aluminum	1250		E	P
7440-38-2	Arsenic	3120			P
7440-39-3	Barium	181		EJ	P
7440-41-7	Beryllium	5.0	ט	l	P
7440-43-9	Cadmium	49.7	Ĭ		P
7440-70-2	Calcium	500	ט	1	P
7440-47-3	Chromium	499	1	EJ	P
7440-48-4	Cobalt	5.0	סן	1	P
7440-50-8	Copper	150	1	「ゴ	P
7439-89-6	Iron	1480000		EJ	P
7439-92-1	Lead	392	T	ーゴ	P
7439-95-4	Magnesium	482	Ī	E	P
7439-96-5	Manganese	2710	Ī	E 3	P
7440-02-0	Nickel	10	Ŭ		P
7440-09-7	Potassium	559			P
7782-49-2	Selenium	2980			P
7439-97-6	Mercury	8.5	Ū	WI	cv
7440-22-4	Silver	3.0	ט		P
7440-23-5	Sodium	3530		ميدا	P
7440-62-2	Vanadium	34.1		E	P
7440-66-6	Zinc	357		EJ	P
7440-36-0	Antimony	20.0	ט		М
7440-28-0	Thallium	20.0	ש]	М

Color Before	ORANGE	Clarity Before:	OPAQUE	Texture:	OIL
Color After:	ORANGE	Clarity After:	CLEAR	_ Artifacts:	
Comments:					

INORGANIC ANALYSIS DATA SHEET

SAMPLE NO.

		-				-	-		-		
				_							
SC-PHD		٠(חו	1							
	٠	•		•							

Contract: NY99-220

Lab Code: STLBFLO

Case No.:

WATER

SAS No.:

SDG NO.:

7010

Matrix (soil/water):

Lab Sample ID: AD114155

Level (low/med):

LOW

Date Received: 7/24/01

Concentration Units (ug/L or mg/kg dry weight): UG/L

	,			
Analyte	Concentration	С	Q	М
Aluminum	18000	1	EJ	P
Antimony	79.9		1 7	P
Arsenic	7.7	1	JE /	P
Barium	1100		EJ	P
Beryllium	5.0	ט		P
Cadmium	1.7			P
Calcium	238000		コゴ	P
Chromium	196		EJ	P
Cobalt	10.1		1 3	P
Copper	121	T	13	P
Iron	76400		EJ	P
Lead	138		IJ	P
Magnesium	5640		IE I	P
Manganese	567		EJ	P
Nickel	40.0	$\overline{1}$	1	P
Potassium	56300	T	13	P
Selenium	10.0	ש	Ī	P
Mercury	0.200	ש	13	cv
Silver	3.0	ט] :	P
Sodium	126000	T	25	P
Thallium	21.7		J	P
Vanadium	35.7	T	EJ	P
Zinc	88100		E J	P
	Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Nickel Potassium Selenium Mercury Silver Sodium Thallium Vanadium	Aluminum	Aluminum	Aluminum

Color Before:	BROWN	Clarity Before:	CLOUDY	Texture:	HEAVY
Color After:	BROWN	Clarity After:	CLOUDY	Artifacts:	
Comments:					
_					· ·

-1-

INORGANIC ANALYSIS DATA SHEET

0	7.1	AT.	T	π,	11	Ď.
3	n.	ч-	11	-	N	

sc-purh1	 	
·		

Contract: NY99-220

Lab Code: STLBFLO

Level (low/med):

Case No.:

SAS No.:

SDG NO.:

7010

Matrix (soil/water):

WATER

LOW

Lab Sample ID: AD114154

.

Date Received: 7/24/01

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	C	Q	м
7429-90-5	Aluminum	36500	1	EJ	P
7440-36-0	Antimony	36.4	T	13	P
7440-38-2	Arsenic	15.1		JE.	P
7440-39-3	Barium	1410		EJ	P
7440-41-7	Beryllium	5.0	טן		P
7440-43-9	Cadmium	1.6	1		P
7440-70-2	Calcium	367000	Ī	13	P
7440-47-3	Chromium	313	1	EJ	P
7440-48-4	Cobalt	17.6	Ī	13	P
7440-50-8	Copper	166		13	P
7439-89-6	Iron	81400	1	EJ	P
7439-92-1	Lead	112	Π	13	P
7439-95-4	Magnesium	11300	1	EJ	P
7439-96-5	Manganese	764		EJ	P
7440-02-0	Nickel	74.6	Π	13	P
7440-09-7	Potassium	79100	1	13	P
7782-49-2	Selenium	10.0	ט		P
7439-97-6	Mercury	0.200	ט	13	cv
7440-22-4	Silver	3.0	ט	j	P
7440-23-5	Sodium	152000		足了	P
7440-28-0	Thallium	20.3			P
7440-62-2	Vanadium	75.1		E	P
7440-66-6	Zinc	29600	ĵ.	E	P

Color Before:	BROWN	Clarity Before:	CLOUDY	Texture:	HEAVY
Color After:	BROWN	Clarity After:	CLOUDY	Artifacts:	
Comments:				•	

INORGANIC ANALYSIS DATA SHEET

	SAMPLE NO.	
ĺ		
I	SC-243	

Contract: NY99-220

Lab Code: STLBFLO

Case No.:

SAS No.:

SDG NO.:

7010

Matrix (soil/water):

WATER

Lab Sample ID: AD114737

Level (low/med):

LOW

Date Received: 7/24/01

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum	685000	1	EJ	P
7440-36-0	Antimony	57.5	1	24	P
7440-38-2	Arsenic	149		1 1	P
7440-39-3	Barium	28.1		13	P
7440-41-7	Beryllium	16.4	T		P
7440-43-9	Cadmium	9.8	T		P
7440-70-2	Calcium	310000		框了	P
7440-47-3	Chromium	11300	1	E	P
7440-48-4	Cobalt	318		13	P
7440-50-8	Copper	648	T		P
7439-89-6	Iron	522000	Ī	EJ	P
7439-92-1	Lead	585	1	13	P
7439-95-4	Magnesium	190000	T	E J	P
7439-96-5	Manganese	6550	1	E J	P
7440-02-0	Nickel	1870		EJ	P
7440-09-7	Potassium	114000]	P
7782-49-2	Selenium	20.0	טן	1	P
7439-97-6	Mercury	0.200	טן	11	CV
7440-22-4	Silver	6.0	U	1	P
7440-23-5	Sodium	1060000		1	P
7440-28-0	Thallium	40.0	ט	1	P
7440-62-2	Vanadium	2380	ļ	E	P
7440-66-6	Zinc	2160		E	P

Color Before	: ORANGE	Clarity Before:	CLEAR	Texture:	NONE
Color After:	ORANGE	Clarity After:	CLEAR	Artifacts:	
Comments:					
_					
_	·				

INORGANIC ANALYSIS DATA SHEET

	SAMPLE	NO.					
١			 	:	 -	 	_
ł	ł						
1	SC-230						
ł	30 230						

Contract: NY99-220

Lab Code: STLBFLO

SAS No.: Case No.:

SDG NO.:

7010

Matrix (soil/water):

SOIL

Lab Sample ID: AD114259

Level (low/med):

LOW

Date Received: 7/24/01

% Solids: 65

Concentration Units (ug/L or mg/kg dry weight):

	1	1			1
CAS No.	Analyte	Concentration	C	Ω	М
7429-90-5	Aluminum	30.7	ָּט	1	P
7440-36-0	Antimony	15.3	Ü	NJ	P
7440-38-2	Arsenic	1.5	ם		P
7440-39-3	Barium	8.3	1	NJ	P
7440-41-7	Beryllium	0.77	ס	<u> </u>	P
7440-43-9	Cadmium	0.77	ט		P
7440-70-2	Calcium	1050]	1	P
7440-47-3	Chromium	4.7			P
7440-48-4	Cobalt	3.1	ט	Lu	P
7440-50-8	Copper	4.8		NJ	P
7439-89-6	lron	136]		P
7439-92-1	Lead	7.7	ט	LK	P
7439-95-4	Magnesium	419		1200	P
7439-96-5	Manganese	61-4-	1	H-R	P
7440-02-0	Nickel	-2-1	ļi.	THE R	P
7440-09-7	Potassium	307	סן]	P
7782-49-2	Selenium	4.6	ש	17	P
7439-97-6	Mercury	0.153	ס	WJ	cv
7440-22-4	Silver	1.5	ט	1	P
7440-23-5	Sodium	398			P
7440-28-0	Thallium	9.2	טן		P
7440-62-2	Vanadium	-1.5	111	N R	P
7440-66-6	Zinc	-13.4		PT-R	P

Color	Before:	GRAY	Clarity Before:		Texture:	MEDIUM
Color	After:	YELLOW	Clarity After:	CLOUDY	Artifacts:	
Commen	ts:					
	· <u>• • • • • • • • • • • • • • • • • • •</u>				x x	

INORGANIC ANALYSIS DATA SHEET

SAMPLE	NO

SC	-2	4	15	15			

Contract: NY99-220

Lab Code: STLBFLO

Case No.:

SAS No.:

SDG NO.:

7010

Matrix (soil/water):

SOIL

Lab Sample ID: AD114257

Level (low/med):

LOW

Date Received: 7/24/01

% Solids: 100

Concentration Units (ug/L or mg/kg dry weight):

CAS No.	Analyte	Concentration	C	Q	М
7429-90-5	Aluminum	135	1	4	P
7440-36-0	Antimony	9.9	ט	IN I	P
7440-38-2	Arsenic	1.2		1	P
7440-39-3	Barium	0.99	טן	NJ	P
7440-41-7	Beryllium	0.50	ַ ט	1	P
7440-43-9	Cadmium	0.50	ט	j	P
7440-70-2	Calcium	99.3	ש		P
7440-47-3	Chromium	6.1	I		P
7440-48-4	Cobalt	2.0	U	NJ	P
7440-50-8	Copper	2.0	ט	и	P
7439-89-6	Iron	654	T.	.]	P
7439-92-1	Lead	5.0	ט	иД	P
7439-95-4	Magnesium	19.9	ש	24	P
7439-96-5	Manganese	1 1.7	1_	PF R	P
7440-02-0	Nickel	-2.0	μ.	HAT R	P
7440-09-7	Potassium	199	שׁ	1	P
7782-49-2	Selenium	3.0	שׁ	IJ	P
7440-22-4	Silver	0.99	U		P
7439-97-6	Mercury	0.098	ט	JX I	cv
7440-23-5	Sodium	99.3	ט		P
7440-28-0	Thallium	6.0	ט		P
7440-62-2	Vanadium	-1.0		P R	P
7440-66-6	Zinc	798	+	NR	P

Color	Before:	BROWN	Clarity Before:		Texture:	OIL
Color	After:	YELLOW	Clarity After:	CLOUDY	Artifacts:	
Commen	ts:					

-1-

INORGANIC ANALYSIS DATA SHEET

SAMPLE	NO.
--------	-----

I		
SC-49	3	
1	_	
1		

Contract: NY99-220

Lab Code: STLBFLO

Case No.:

SAS No.:

SDG NO.:

7010

Matrix (soil/water):

SOIL

Lab Sample ID: AD114258

Nata Danida 1 7/04/01

% Solids: 100

Level (low/med):

LOW

Date Received: 7/24/01

-

Concentration Units (ug/L or mg/kg dry weight):

			•		, ,
CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	20.2	ט	14	P
7440-36-0	Antimony	10.1	ש	Lu	P
7440-38-2	Arsenic	11.4		1	P
7440-39-3	Barium	1.0	ש	NJ	P
7440-41-7	Beryllium	0.51	ט	1	P
7440-43-9	Cadmium	0.51	ש		P
7440-70-2	Calcium	101	Ū		P
7440-47-3	Chromium	2.0	ס	<u>.</u>	P
7440-48-4	Cobalt	2.0	Ù	и	P
7440-50-8	Copper	2.0	ם	NJ	P
7439-89-6	Iron	255		1	P
7439-92-1	Lead	5.1	ם	N	P
7439-95-4	Magnesium	20.2	ט	Nima	P
7439-96-5	Manganese	-1.4	1_	W-R	P
7440-02-0	Nickel		11.	M-R	P
7440-09-7	Potassium	613	1	1	P
7782-49-2	Selenium	3.0	טן	T	P
7440-22-4	Silver	1.0	ט	1	P
7439-97-6	Mercury	0.089	ט	MI	cv
7440-23-5	Sodium	126000		1.	P
7440-28-0	Thallium	6.1	Ū	<u> </u>	P
7440-62-2	Vanadium		-	#-R	P
7440-66-6	Zinc	_1_0_		PR R	P

Color Before:	BROWN	Clarity	Before:		Texture:	OIL
Color After:	YELLOW	Clarity	After:	CLOUDY	Artifacts:	
Comments:					•	
						

INORGANIC ANALYSIS DATA SHEET

SAMPLE NO.

4		 	
1	SC-CC11-COMP		
	. •		

Contract: NY99-220

Lab Code: STLBFLO

Case No.:

SAS No.:

SDG NO.:

7010

Matrix (soil/water):

Lab Sample ID: AD114256

Level (low/med):

LOW

Date Received: 7/24/01

% Solids: 100

Concentration Units (ug/L or mg/kg dry weight):

CAS No.	Analyte	Concentration	C	Q	м
7429-90-5	Aluminum	20.0	ט	No.	P
7440-36-0	Antimony	10.0	บ	NJ	P
7440-38-2	Arsenic	1.0	U		P
7440-39-3	Barium	1.0	ט	й	P
7440-41-7	Beryllium	0.50	ט		P
7440-43-9	Cadmium	0.50	U]	P
7440-70-2	Calcium	99.9	ט	1	P
7440-47-3	Chromium	2.4			P
7440-48-4	Cobalt	2.0	ט	N T	P
7440-50-8	Copper	2.0	ט	N	P
7439-89-6	Iron	399		1	P
7439-92-1	Lead	5.0	ט	NI	Р
7439-95-4	Magnesium	20.0	ש	120	P
7439-96-5	Manganese	-22		17-P	P
7440-02-0	Nickel	2.0	11	W-R	P
7440-09-7	Potassium	200	U		P
7782-49-2	Selenium	3.0	U	3	P
7440-22-4	Silver	1.0	U	<u> </u>	P
7439-97-6	Mercury	0.156		M	cv
7440-23-5	Sodium	714			P
7440-28-0	Thallium	6.0	Ü		P
7440-62-2	Vanadium	-1.0-	U -	M-R	·P
7440-66-6	Zinc	-4.6	 	19m Q	P

Color Before:	BROWN	Clarity Before:		Texture:	OIL
Color After:	YELLOW	Clarity After:	CLOUDY	Artifacts:	
Comments:				, .	
					

INORGANIC ANALYSIS DATA SHEET

SAMPLE NO.

_				-						- /	~		1				_ :
г								_	•					-		A.	
- 1																	
- 1		_															
	27	1	15/	~~	M	63											
- 1	36	—т	ノエヽ		41.	5 4											
ŀ																	
•																	

Contract: NY99-220

Lab Code: STLBFLO

Case No.:

SAS No.:

SDG NO.:

7010

Matrix (soil/water):

SOIL

LOW

Lab Sample ID: AD114260

Date Received: 7/24/01

% Solids: 36

Level (low/med):

Concentration Units (ug/L or mg/kg dry weight):

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	4920	1	W J	P
7440-36-0	Antimony	28.1	שׁ	N	P
7440-38-2	Arsenic	4.5			P
7440-39-3	Barium	32.0	1	NJ	P
7440-41-7	Beryllium	1.4	ש	7	P
7440-43-9	Cadmium	1.4	ט	コ	P
7440-70-2	Calcium	17400		J	P
7440-47-3	Chromium	2440		一丁	P
7440-48-4	Cobalt	14.6	1	NJ	P
7440-50-8	Copper	18.0		N	P
7439-89-6	Íron	11400		1	P
7439-92-1	Lead	26.4		N J	P
7439-95-4	Magnesium	4750	<u> </u>	X T	P
7439-96-5	Manganese	114	-	R R	P
7440-02-0	Nickel	-102	1	N-R	P
7440-09-7	Potassium	562	ט	1 7	P
7782-49-2	Selenium	8.4	U	3	P
7439-97-6	Mercury	1.5		イド	CV
7440-22-4	Silver	2.8	ט		P
7440-23-5	Sodium	1490			P
7440-28-0	Thallium	16.9	ט	J	P
7440-62-2	Vanadium	-104	 	N-R	P
7440-66-6	Zinc	-67-2	1	17-R	P

Color	Before:	BROWN	Clarity Befor	re:	Texture:	MEDIUM
Color	After:	YELLOW	Clarity After	r: CLOUDY	Artifacts:	
Comme	nts:					
		<u> </u>				

002804 Client Sample No.

ISC-CC11-CO	MP	•

Lab Name: STL Buffalo

Contract:

Lab Code: RECNY Case No.:

SAS No.:

SDG No.: 7010

Matrix (soil/water): SOIL

Lab Sample ID: A1701001

₹ Solids: <u>0.0</u>

Parameter Name	Units of Measure	Result	С	Q	М	Method Number	Analyzed Date
Hexavalent Chromium - Total	MG/KG	1.0	υ	·	A	7196A	07/27/2001

_	4				 •
omments:					
			,	•	
			•		 -

Client Sample No.

SC-DFCOMP1		
		1

Lab Name: STL Buffalo

Contract: _

Lab Code: <u>RECNY</u>

Case No.: ____

SAS No.: ____

SDG No.: 7010

Matrix (soil/water): SOIL

Lab Sample ID: A1701202

₹ Solids:

<u>36.3</u>

Parameter Name	Units of Measure	Result	С	Q	М	Method Number	Analyzed Date
Hexavalent Chromium - Total	MG/KG	920		Н	A	7196A	08/25/2001

nts:	•							•
					ř			
								
			-					
			 					

002806

Client Sample No.

		SC-PHD-001
Lab Name: <u>STL Buffalo</u>	Contract:	

SAS No.: _

Matrix (soil/water): WATER

SDG No.: 7010

Lab Sample ID: A1701103

% Solids:

0.0

Lab Code: RECNY Case No.: ____

Parameter Name	Units of Measure	Result	С	Q	м	Method Number	Analyzed Date
Hexavalent Chromium - Total	MG/L	0.010	U		A	7196A	07/25/2001

omments:					
		 approximate the second			
		 	_	 	

Contract: _

Client Sample No. SC-PURH1 SDG No.: 7010

ab Name: STL Buffalo

ab Code: <u>RECNY</u> Case No.:

SAS No.: ____

Matrix (soil/water): WATER

Lab Sample ID: A1701102

s Solids:

Parameter Name	Units of Measure	Result	С	Q	М	Method Number	Analyzed Date
Hexavalent Chromium - Total	MG/L	0.010	U		Α	7196A	07/25/2001

ments:			•			
			•	*		
	:	nigari (4), 30 , 10 Trich 3	-1	/		
· · · · · · · · · · · · · · · · · · ·						

Client Sample No.

	SC-PURMI	
- 1		

Lab Name: STL Buffalo

Contract:

Lab Code: RECNY

Case No.: _

SAS No.: ____

SDG No.: 7010

Matrix (soil/water): WATER

Lab Sample ID: A1701104

₹ Solids:

Parameter Name	Units of Measure	Result	С	Q	М	Method Number	Analyzed Date
Hexavalent Chromium - Total	MG/L	0.010	U		A	7196A	07/25/2001

Comments:			
	· · · · · · · · · · · · · · · · · · ·		

Client Sample No.

15C-229	000	20	

ab Name: STL Buffalo

Contract: _

ab Code: RECNY

Case No.:

SAS No.: _

SDG No.: 7010

Matrix (soil/water): WATER

Lab Sample ID: A1701101

k Solids:

0.0

	Units of Measure	Result	С	Q	М	Method Number	Analyzed Date
Hexavalent Chromium - Total	MG/L	0.10		,	A	7196 A	07/25/2001

ents:			

002809

Client Sample No.

SC-	-230) ·		
1			4	
1 -4 -	w	196	 	

ab Name: STL Buffalo

Contract:

ab Code: <u>RECNY</u> Case No.:

SAS No.:

SDG No.: 7010

Matrix (soil/water): SOIL

Lab Sample ID: A1701201

Solids:

<u>65.2</u>

Parameter Name	Units of Measure	Result	С	Q	М	Method Number	Analyzed Date
Hexavalent Chromium - Total	MG/KG	1.0	Ū		Α	7196A	07/27/2001

		 			and the second s	
						-
	*					•
mments:						
		-				
-						
		 	·			
				<u></u>		
	•	 				

Client Sample No. 11

SC-243		
100		

ab Name: STL Buffalo

Contract:

ab Code: RECNY

Case No.: ____

SAS No.: ____

SDG No.: 7010

Matrix (soil/water): WATER

Lab Sample ID: A1701105

} Solids:

0.0

Parameter Name	Units of Measure	Result	С	Q	М	Method Number	Analyzed Date
Hexavalent Chromium - Total	MG/L	0.020	บ		A	7196A	07/25/2001

ints:			
	•		
<u> </u>			
	<u> </u>	 	

Client Sample No.

•			
		SC-241515	l
Lab Name: STL Buffalo	Contract: _	<u> </u>	لبب

SAS No.: ____

SDG No.: <u>7010</u>

Matrix (soil/water): SOIL

Lab Sample ID: A1701002

₹ Solids:

Lab Code: RECNY

0.0

Case No.: ____

Parameter Name	Units of Measure	Result	С	Q	м	Method Number	Analyzed Date
Hexavalent Chromium - Total	MG/KG	1.0	U		A	7196A	07/27/2001

mments:			
·			

 $\begin{array}{c} 002813 \\ \text{Client Sample No.} \end{array}$

SC-493

ab Name: STL Buffalo

Contract:

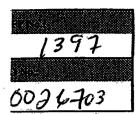
ab Code: RECNY Case No.: _

SAS No.: ___

SDG No.: 7010

Matrix (soil/water): SOIL

Lab Sample ID: A1701004


} Solids:

0.0

Parameter Name	Units of Measure	Result	С	Q	М	Method Number	Analyzed Date
Hexavalent Chromium - Total	MG/KG	1.0	บ		A	7196A	07/27/2001

omments:	•						:	
					•			
				· · · · · · · · · · · · · · · · · · ·		 		

CHAIN OF CUSTODY RECORD

Removal Support Team EPA CONTRACT 68-W-00-113 Phone (732)225-6116 Fax: 732-225-7037

1. Surface	1. HCI
2. Ground Water	2. HN03
3. Leachate	3. Na2SO4
4. Rinsate	4. H2SO4
5. Soil/Sediment	5. Other (Specify)
6. Oil	6. Ice Only
7. Waste	N. Not Preserved
8. Other	* See Comments

AAA.

and verbal and writ	tten results to:		Suite	F. Weston 201, 109 ntion: Smi	0 King	Georges I baly, RST	ost Ro	ad, Edisc tical Cod	on, New ordinator	Jersey	08837-	3703							
								23.53				RCI	RA AN	ALYSIS	LYSIS				
*	Sample Collection 184000/YY Time	Sample Mattix (Ester box I)	Conc. Low-L Med-M High-R	Sample Type Comp-C Gath-G	Sample Preserv. (Enter Box (t)	VOA	BNA	PEST	PCBs	TAL	СИ	IGN	CÓR	REAC	OTHER Crt2	Metels			
:-cc11-comp	1/28/01 1025	4/1	H	2	4	X			X	X					X	10784			
-2291	1030			G		X			IX	IX.	-				X				
-741575 V	1033	V	V	2		$\perp X$			IX	X					X				
c-2301	1130	. 87 -	M	9		$\bot X$		<u> </u>	X	X					X				
C-228V	1 [35	6/7	H	6	\sqcup				IX.					ļ					
16-243V	1140	1				IX.		<u> </u>	X	 					X				
C-4613	1145	V	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4	V		-		X	X					X	s/msn			
C PURHT	1200	2	H	ζ_	Ino	NX.	 		X	X					X	رومراد			
C-PHD-00	1215	1			16				IX,	X]	_			X.	10.40142			
C. PURMI	130	-	X.	y	140	91	₩		X	X	/	ļ	 		 	PURMI			
C-DECOMPT	√ /4:	V		1,	1-vê	AX	<u></u>	<u>l.</u>			<u> </u>	3							
emments:	TAL- NO	7+	pre	seri	eo	1 0	uc	ع محد :	- * ¥	re.	3 2		2	i/	1 lak	a_			
erson Assuming Re	sponsibility for Sam	ples:				•		•						Tin	ne/Date				
	K	<u>ماه</u>	ert	ے ،		=i n	ke	2				`		l.	83° A	123/01			
ample Number	Relinquishe		-		Tim		<i>i</i> .	Receive	d By:	1			ତ '	Rea	son for Char	ige of Custody			
AU LIST	20 16.6	2 f	ink	<u>t</u>	18	30 7	2/2	(w	ws &	nes		8		7/0	24/01	0948			
ample Number	Relinquishe	d By:			Tim	e Da	te i	Receive	d By:		•			Rea	ison for Char	ige of Custody			
ample Number	Relinquishe	d By:			Tim	e Da	te 1	Received	d By:				_	Rea	eson for Char	ige of Custody			

y F. Weston, Inc.
DERAL PROGRAMS DIVISION
Association with Inland Pollution Services P.R., Inc., Resource Applications, Inc., and GRB Environmental Services, Inc.